Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import hashlib | |
import os | |
from pathlib import Path | |
from huggingface_hub import snapshot_download | |
from scripts.download_guardrail_checkpoints import download_guardrail_checkpoints | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser( | |
description="A script to download NVIDIA Cosmos-Tokenizer1 models from Hugging Face" | |
) | |
parser.add_argument( | |
"--tokenizer_types", | |
nargs="*", | |
default=[ | |
"CV8x8x8-720p", | |
"DV8x16x16-720p", | |
"CI8x8-360p", | |
"CI16x16-360p", | |
"CV4x8x8-360p", | |
"DI8x8-360p", | |
"DI16x16-360p", | |
"DV4x8x8-360p", | |
], # Download all by default | |
choices=[ | |
"CV8x8x8-720p", | |
"DV8x16x16-720p", | |
"CI8x8-360p", | |
"CI16x16-360p", | |
"CV4x8x8-360p", | |
"DI8x8-360p", | |
"DI16x16-360p", | |
"DV4x8x8-360p", | |
], | |
help="Which tokenizer model types to download. Possible values: CV8x8x8-720p, DV8x16x16-720p, CV4x8x8-360p, DV4x8x8-360p", | |
) | |
parser.add_argument( | |
"--checkpoint_dir", type=str, default="checkpoints", help="Directory to save the downloaded checkpoints." | |
) | |
args = parser.parse_args() | |
return args | |
MD5_CHECKSUM_LOOKUP = { | |
"Cosmos-Tokenize1-CV8x8x8-720p/autoencoder.jit": "7f658580d5cf617ee1a1da85b1f51f0d", | |
"Cosmos-Tokenize1-CV8x8x8-720p/decoder.jit": "ff21a63ed817ffdbe4b6841111ec79a8", | |
"Cosmos-Tokenize1-CV8x8x8-720p/encoder.jit": "f5834d03645c379bc0f8ad14b9bc0299", | |
"Cosmos-Tokenize1-CV8x8x8-720p/mean_std.pt": "f07680ad7eefae57d698778e2a0c7c96", | |
"Cosmos-Tokenize1-CI16x16-360p/autoencoder.jit": "98f8fdf2ada5537705d6d1bc22c63cf1", | |
"Cosmos-Tokenize1-CI16x16-360p/decoder.jit": "dd31a73a8c7062bab25492401d83b473", | |
"Cosmos-Tokenize1-CI16x16-360p/encoder.jit": "7be1dadea5a1c283996ca1ce5b1a95a9", | |
"Cosmos-Tokenize1-CI8x8-360p/autoencoder.jit": "b2ff9280b12a97202641bb2a41d7b271", | |
"Cosmos-Tokenize1-CI8x8-360p/decoder.jit": "57fb213cd88c0a991e9d400875164571", | |
"Cosmos-Tokenize1-CI8x8-360p/encoder.jit": "138fe257df41d7a43c17396c23086565", | |
"Cosmos-Tokenize1-CV4x8x8-360p/autoencoder.jit": "0690ff725700128424d082b44a1eda08", | |
"Cosmos-Tokenize1-CV4x8x8-360p/decoder.jit": "7573744ec14cb1b2abdf9c80318b7224", | |
"Cosmos-Tokenize1-CV4x8x8-360p/encoder.jit": "fe3a7193defcb2db0b849b6df480b5e6", | |
"Cosmos-Tokenize1-CV8x8x8-720p/autoencoder.jit": "7f658580d5cf617ee1a1da85b1f51f0d", | |
"Cosmos-Tokenize1-CV8x8x8-720p/decoder.jit": "ff21a63ed817ffdbe4b6841111ec79a8", | |
"Cosmos-Tokenize1-CV8x8x8-720p/encoder.jit": "f5834d03645c379bc0f8ad14b9bc0299", | |
"Cosmos-Tokenize1-DI16x16-360p/autoencoder.jit": "88195130b86c3434d3d4b0e0376def6b", | |
"Cosmos-Tokenize1-DI16x16-360p/decoder.jit": "bf27a567388902acbd8abcc3a5afd8dd", | |
"Cosmos-Tokenize1-DI16x16-360p/encoder.jit": "12bae3a56c79a7ca0beb774843ee8c58", | |
"Cosmos-Tokenize1-DI8x8-360p/autoencoder.jit": "1d638e6034fcd43619bc1cdb343ebe56", | |
"Cosmos-Tokenize1-DI8x8-360p/decoder.jit": "b9b5eccaa7ab9ffbccae3b05b3903311", | |
"Cosmos-Tokenize1-DI8x8-360p/encoder.jit": "2bfa3c189aacdf9dc8faf17bcc30dd82", | |
"Cosmos-Tokenize1-DV4x8x8-360p/autoencoder.jit": "ff8802dc4497be60dc24a8f692833eed", | |
"Cosmos-Tokenize1-DV4x8x8-360p/decoder.jit": "f9a7d4bd24e4d2ee210cfd5f21550ce8", | |
"Cosmos-Tokenize1-DV4x8x8-360p/encoder.jit": "7af30a0223b2984d9d27dd3054fcd7af", | |
"Cosmos-Tokenize1-DV8x16x16-720p/autoencoder.jit": "606b8585b637f06057725cbb67036ae6", | |
"Cosmos-Tokenize1-DV8x16x16-720p/decoder.jit": "f0c8a9d992614a43e7ce24ebfc901e26", | |
"Cosmos-Tokenize1-DV8x16x16-720p/encoder.jit": "95186b0410346a3f0cf250b76daec452", | |
} | |
def get_md5_checksum(checkpoints_dir, model_name): | |
print("---------------------") | |
for key, value in MD5_CHECKSUM_LOOKUP.items(): | |
if key.startswith(model_name): | |
print(f"Verifying checkpoint {key}...") | |
file_path = checkpoints_dir.joinpath(key) | |
# File must exist | |
if not Path(file_path).exists(): | |
print(f"Checkpoint {key} does not exist.") | |
return False | |
# File must match give MD5 checksum | |
with open(file_path, "rb") as f: | |
file_md5 = hashlib.md5(f.read()).hexdigest() | |
if file_md5 != value: | |
print(f"MD5 checksum of checkpoint {key} does not match.") | |
return False | |
print(f"Model checkpoints for {model_name} exist with matched MD5 checksums.") | |
return True | |
def main(args) -> None: | |
ORG_NAME = "nvidia" | |
# Mapping from size argument to Hugging Face repository name | |
model_map = { | |
"CV8x8x8-720p": "Cosmos-Tokenize1-CV8x8x8-720p", | |
"DV8x16x16-720p": "Cosmos-Tokenize1-DV8x16x16-720p", | |
"CI8x8-360p": "Cosmos-Tokenize1-CI8x8-360p", | |
"CI16x16-360p": "Cosmos-Tokenize1-CI16x16-360p", | |
"CV4x8x8-360p": "Cosmos-Tokenize1-CV4x8x8-360p", | |
"DI8x8-360p": "Cosmos-Tokenize1-DI8x8-360p", | |
"DI16x16-360p": "Cosmos-Tokenize1-DI16x16-360p", | |
"DV4x8x8-360p": "Cosmos-Tokenize1-DV4x8x8-360p", | |
} | |
# Create local checkpoints folder | |
checkpoints_dir = Path(args.checkpoint_dir) | |
checkpoints_dir.mkdir(parents=True, exist_ok=True) | |
download_kwargs = dict(allow_patterns=["README.md", "model.pt", "mean_std.pt", "config.json", "*.jit"]) | |
# Download the requested Tokenizer models | |
for tokenizer_type in args.tokenizer_types: | |
model_name = model_map[tokenizer_type] | |
repo_id = f"{ORG_NAME}/{model_name}" | |
local_dir = checkpoints_dir.joinpath(model_name) | |
if not get_md5_checksum(checkpoints_dir, model_name): | |
local_dir.mkdir(parents=True, exist_ok=True) | |
print(f"Downloading {repo_id} to {local_dir}...") | |
snapshot_download( | |
repo_id=repo_id, local_dir=str(local_dir), local_dir_use_symlinks=False, **download_kwargs | |
) | |
download_guardrail_checkpoints(args.checkpoint_dir) | |
if __name__ == "__main__": | |
args = parse_args() | |
main(args) | |