GENC3-docker / scripts /download_tokenizer_checkpoints.py
roll-ai's picture
Upload 381 files
b6af722 verified
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import hashlib
import os
from pathlib import Path
from huggingface_hub import snapshot_download
from scripts.download_guardrail_checkpoints import download_guardrail_checkpoints
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="A script to download NVIDIA Cosmos-Tokenizer1 models from Hugging Face"
)
parser.add_argument(
"--tokenizer_types",
nargs="*",
default=[
"CV8x8x8-720p",
"DV8x16x16-720p",
"CI8x8-360p",
"CI16x16-360p",
"CV4x8x8-360p",
"DI8x8-360p",
"DI16x16-360p",
"DV4x8x8-360p",
], # Download all by default
choices=[
"CV8x8x8-720p",
"DV8x16x16-720p",
"CI8x8-360p",
"CI16x16-360p",
"CV4x8x8-360p",
"DI8x8-360p",
"DI16x16-360p",
"DV4x8x8-360p",
],
help="Which tokenizer model types to download. Possible values: CV8x8x8-720p, DV8x16x16-720p, CV4x8x8-360p, DV4x8x8-360p",
)
parser.add_argument(
"--checkpoint_dir", type=str, default="checkpoints", help="Directory to save the downloaded checkpoints."
)
args = parser.parse_args()
return args
MD5_CHECKSUM_LOOKUP = {
"Cosmos-Tokenize1-CV8x8x8-720p/autoencoder.jit": "7f658580d5cf617ee1a1da85b1f51f0d",
"Cosmos-Tokenize1-CV8x8x8-720p/decoder.jit": "ff21a63ed817ffdbe4b6841111ec79a8",
"Cosmos-Tokenize1-CV8x8x8-720p/encoder.jit": "f5834d03645c379bc0f8ad14b9bc0299",
"Cosmos-Tokenize1-CV8x8x8-720p/mean_std.pt": "f07680ad7eefae57d698778e2a0c7c96",
"Cosmos-Tokenize1-CI16x16-360p/autoencoder.jit": "98f8fdf2ada5537705d6d1bc22c63cf1",
"Cosmos-Tokenize1-CI16x16-360p/decoder.jit": "dd31a73a8c7062bab25492401d83b473",
"Cosmos-Tokenize1-CI16x16-360p/encoder.jit": "7be1dadea5a1c283996ca1ce5b1a95a9",
"Cosmos-Tokenize1-CI8x8-360p/autoencoder.jit": "b2ff9280b12a97202641bb2a41d7b271",
"Cosmos-Tokenize1-CI8x8-360p/decoder.jit": "57fb213cd88c0a991e9d400875164571",
"Cosmos-Tokenize1-CI8x8-360p/encoder.jit": "138fe257df41d7a43c17396c23086565",
"Cosmos-Tokenize1-CV4x8x8-360p/autoencoder.jit": "0690ff725700128424d082b44a1eda08",
"Cosmos-Tokenize1-CV4x8x8-360p/decoder.jit": "7573744ec14cb1b2abdf9c80318b7224",
"Cosmos-Tokenize1-CV4x8x8-360p/encoder.jit": "fe3a7193defcb2db0b849b6df480b5e6",
"Cosmos-Tokenize1-CV8x8x8-720p/autoencoder.jit": "7f658580d5cf617ee1a1da85b1f51f0d",
"Cosmos-Tokenize1-CV8x8x8-720p/decoder.jit": "ff21a63ed817ffdbe4b6841111ec79a8",
"Cosmos-Tokenize1-CV8x8x8-720p/encoder.jit": "f5834d03645c379bc0f8ad14b9bc0299",
"Cosmos-Tokenize1-DI16x16-360p/autoencoder.jit": "88195130b86c3434d3d4b0e0376def6b",
"Cosmos-Tokenize1-DI16x16-360p/decoder.jit": "bf27a567388902acbd8abcc3a5afd8dd",
"Cosmos-Tokenize1-DI16x16-360p/encoder.jit": "12bae3a56c79a7ca0beb774843ee8c58",
"Cosmos-Tokenize1-DI8x8-360p/autoencoder.jit": "1d638e6034fcd43619bc1cdb343ebe56",
"Cosmos-Tokenize1-DI8x8-360p/decoder.jit": "b9b5eccaa7ab9ffbccae3b05b3903311",
"Cosmos-Tokenize1-DI8x8-360p/encoder.jit": "2bfa3c189aacdf9dc8faf17bcc30dd82",
"Cosmos-Tokenize1-DV4x8x8-360p/autoencoder.jit": "ff8802dc4497be60dc24a8f692833eed",
"Cosmos-Tokenize1-DV4x8x8-360p/decoder.jit": "f9a7d4bd24e4d2ee210cfd5f21550ce8",
"Cosmos-Tokenize1-DV4x8x8-360p/encoder.jit": "7af30a0223b2984d9d27dd3054fcd7af",
"Cosmos-Tokenize1-DV8x16x16-720p/autoencoder.jit": "606b8585b637f06057725cbb67036ae6",
"Cosmos-Tokenize1-DV8x16x16-720p/decoder.jit": "f0c8a9d992614a43e7ce24ebfc901e26",
"Cosmos-Tokenize1-DV8x16x16-720p/encoder.jit": "95186b0410346a3f0cf250b76daec452",
}
def get_md5_checksum(checkpoints_dir, model_name):
print("---------------------")
for key, value in MD5_CHECKSUM_LOOKUP.items():
if key.startswith(model_name):
print(f"Verifying checkpoint {key}...")
file_path = checkpoints_dir.joinpath(key)
# File must exist
if not Path(file_path).exists():
print(f"Checkpoint {key} does not exist.")
return False
# File must match give MD5 checksum
with open(file_path, "rb") as f:
file_md5 = hashlib.md5(f.read()).hexdigest()
if file_md5 != value:
print(f"MD5 checksum of checkpoint {key} does not match.")
return False
print(f"Model checkpoints for {model_name} exist with matched MD5 checksums.")
return True
def main(args) -> None:
ORG_NAME = "nvidia"
# Mapping from size argument to Hugging Face repository name
model_map = {
"CV8x8x8-720p": "Cosmos-Tokenize1-CV8x8x8-720p",
"DV8x16x16-720p": "Cosmos-Tokenize1-DV8x16x16-720p",
"CI8x8-360p": "Cosmos-Tokenize1-CI8x8-360p",
"CI16x16-360p": "Cosmos-Tokenize1-CI16x16-360p",
"CV4x8x8-360p": "Cosmos-Tokenize1-CV4x8x8-360p",
"DI8x8-360p": "Cosmos-Tokenize1-DI8x8-360p",
"DI16x16-360p": "Cosmos-Tokenize1-DI16x16-360p",
"DV4x8x8-360p": "Cosmos-Tokenize1-DV4x8x8-360p",
}
# Create local checkpoints folder
checkpoints_dir = Path(args.checkpoint_dir)
checkpoints_dir.mkdir(parents=True, exist_ok=True)
download_kwargs = dict(allow_patterns=["README.md", "model.pt", "mean_std.pt", "config.json", "*.jit"])
# Download the requested Tokenizer models
for tokenizer_type in args.tokenizer_types:
model_name = model_map[tokenizer_type]
repo_id = f"{ORG_NAME}/{model_name}"
local_dir = checkpoints_dir.joinpath(model_name)
if not get_md5_checksum(checkpoints_dir, model_name):
local_dir.mkdir(parents=True, exist_ok=True)
print(f"Downloading {repo_id} to {local_dir}...")
snapshot_download(
repo_id=repo_id, local_dir=str(local_dir), local_dir_use_symlinks=False, **download_kwargs
)
download_guardrail_checkpoints(args.checkpoint_dir)
if __name__ == "__main__":
args = parse_args()
main(args)