Spaces:
Build error
Build error
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import argparse | |
import importlib | |
import os | |
import sys | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--training", | |
action="store_true", | |
help="Whether to check training-specific dependencies", | |
) | |
return parser.parse_args() | |
def check_packages(package_list): | |
global all_success | |
for package in package_list: | |
try: | |
_ = importlib.import_module(package) | |
except Exception as e: | |
print(f"\033[91m[ERROR]\033[0m Package not successfully imported: \033[93m{package}\033[0m") | |
all_success = False | |
else: | |
print(f"\033[92m[SUCCESS]\033[0m {package} found") | |
args = parse_args() | |
if not (sys.version_info.major == 3 and sys.version_info.minor >= 10): | |
detected = f"{sys.version_info.major}.{sys.version_info.minor}.{sys.version_info.micro}" | |
print(f"\033[91m[ERROR]\033[0m Python 3.10+ is required. You have: \033[93m{detected}\033[0m") | |
sys.exit(1) | |
if "CONDA_PREFIX" not in os.environ: | |
print("\033[93m[WARNING]\033[0m Cosmos should be run under a conda environment.") | |
print("Attempting to import critical packages...") | |
packages = [ | |
"torch", | |
"torchvision", | |
"diffusers", | |
"transformers", | |
"megatron.core", | |
"transformer_engine", | |
] | |
packages_training = [ | |
"apex.multi_tensor_apply", | |
] | |
all_success = True | |
check_packages(packages) | |
if args.training: | |
check_packages(packages_training) | |
if all_success: | |
print("-----------------------------------------------------------") | |
print("\033[92m[SUCCESS]\033[0m Cosmos environment setup is successful!") | |