# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from hydra.core.config_store import ConfigStore from megatron.core import parallel_state from torch.utils.data import DataLoader, DistributedSampler from cosmos_predict1.diffusion.training.callbacks.iter_speed import IterSpeed from cosmos_predict1.diffusion.training.callbacks.low_precision import LowPrecisionCallback from cosmos_predict1.diffusion.training.datasets.dataset_multiview import Dataset from cosmos_predict1.diffusion.training.models.model_multiview import FSDPDiffusionModel from cosmos_predict1.diffusion.training.networks.general_dit_multiview import MultiviewGeneralDIT from cosmos_predict1.utils import log from cosmos_predict1.utils.callbacks.grad_clip import GradClip from cosmos_predict1.utils.lazy_config import PLACEHOLDER from cosmos_predict1.utils.lazy_config import LazyCall as L from cosmos_predict1.utils.lazy_config import LazyDict def get_sampler(dataset): return DistributedSampler( dataset, num_replicas=parallel_state.get_data_parallel_world_size(), rank=parallel_state.get_data_parallel_rank(), shuffle=True, seed=0, ) cs = ConfigStore.instance() num_frames = 57 num_views = 5 view_keys = ["pinhole_front_left", "pinhole_front", "pinhole_front_right", "pinhole_side_left", "pinhole_side_right"] example_multiview_dataset_waymo = L(Dataset)( dataset_dir="datasets/waymo", sequence_interval=1, num_frames=num_frames, view_keys=view_keys, video_size=(480, 848), ) text2world_multiview_7b_example_waymo = LazyDict( dict( defaults=[ {"override /net": "faditv2_7b"}, {"override /ckpt_klass": "fsdp"}, {"override /checkpoint": "local"}, {"override /vae": "cosmos_diffusion_tokenizer_comp8x8x8"}, {"override /conditioner": "add_fps_image_size_padding_mask"}, "_self_", ], job=dict( project="posttraining", group="diffusion_text2world", name="text2world_multiview_7b_example_waymo", ), optimizer=dict( lr=2 ** (-14.3), # 2**(-14.3) approx 5e-5 weight_decay=0.1, betas=[0.9, 0.99], eps=1e-10, ), checkpoint=dict( save_iter=200, # broadcast_via_filesystem=True, broadcast_via_filesystem=False, load_path="checkpoints/Cosmos-Predict1-7B-Text2World-Sample-AV-Multiview/model.pt", load_training_state=False, strict_resume=False, keys_not_to_resume=[], ), trainer=dict( max_iter=2000, distributed_parallelism="fsdp", logging_iter=200, callbacks=dict( grad_clip=L(GradClip)( model_key="model", fsdp_enabled=True, ), low_prec=L(LowPrecisionCallback)(config=PLACEHOLDER, trainer=PLACEHOLDER, update_iter=1), iter_speed=L(IterSpeed)( every_n=200, hit_thres=5, ), # manual_gc=L(ManualGarbageCollection)(every_n=5), ), ), model_parallel=dict( sequence_parallel=False, tensor_model_parallel_size=1, context_parallel_size=1, ), model=dict( n_views=num_views, # Use 16x16x32x40 latent shape for training latent_shape=[ 16, # Latent channel dim 16, # Latent temporal dim 88, # Latent height dim 160, # Latent width dim ], loss_reduce="mean", ema=dict( enabled=True, ), fsdp_enabled=True, fsdp=dict( policy="block", checkpoint=True, min_num_params=1024, sharding_group_size=32, sharding_strategy="hybrid", ), net=L(MultiviewGeneralDIT)( rope_h_extrapolation_ratio=1, rope_w_extrapolation_ratio=1, rope_t_extrapolation_ratio=2, n_views=num_views, ), vae=dict(pixel_chunk_duration=num_frames), ), model_obj=L(FSDPDiffusionModel)( config=PLACEHOLDER, fsdp_checkpointer=PLACEHOLDER, ), # warming up for first 2500 steps~(when resume from 310000) scheduler=dict( warm_up_steps=[2500], cycle_lengths=[10000000000000], f_start=[1.0e-6], f_max=[1.0], f_min=[1.0], ), dataloader_train=L(DataLoader)( dataset=example_multiview_dataset_waymo, sampler=L(get_sampler)(dataset=example_multiview_dataset_waymo), batch_size=1, drop_last=True, pin_memory=True, num_workers=8, ), dataloader_val=L(DataLoader)( dataset=example_multiview_dataset_waymo, sampler=L(get_sampler)(dataset=example_multiview_dataset_waymo), batch_size=1, drop_last=True, pin_memory=True, num_workers=8, ), ) ) def register_experiments(cs): # Register the experiments for _item in [ text2world_multiview_7b_example_waymo, ]: experiment_name = _item["job"]["name"] log.info(f"Registering experiment: {experiment_name}") cs.store( group="experiment", package="_global_", name=experiment_name, node=_item, )