# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Optional import torch import torchvision.transforms.functional as transforms_F from PIL import Image def obtain_image_size(data_dict: dict, input_keys: list) -> tuple[int, int]: r"""Function for obtaining the image size from the data dict. Args: data_dict (dict): Input data dict input_keys (list): List of input keys Returns: width (int): Width of the input image height (int): Height of the input image """ data1 = data_dict[input_keys[0]] if isinstance(data1, Image.Image): width, height = data1.size elif isinstance(data1, torch.Tensor): height, width = data1.size()[-2:] else: raise ValueError("data to random crop should be PIL Image or tensor") return width, height class Augmentor: def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None: r"""Base augmentor class Args: input_keys (list): List of input keys output_keys (list): List of output keys args (dict): Arguments associated with the augmentation """ self.input_keys = input_keys self.output_keys = output_keys self.args = args def __call__(self, *args: Any, **kwds: Any) -> Any: raise ValueError("Augmentor not implemented") class ResizeSmallestSideAspectPreserving(Augmentor): def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None: super().__init__(input_keys, output_keys, args) def __call__(self, data_dict: dict) -> dict: r"""Performs aspect-ratio preserving resizing. Image is resized to the dimension which has the smaller ratio of (size / target_size). First we compute (w_img / w_target) and (h_img / h_target) and resize the image to the dimension that has the smaller of these ratios. Args: data_dict (dict): Input data dict Returns: data_dict (dict): Output dict where images are resized """ if self.output_keys is None: self.output_keys = self.input_keys assert self.args is not None, "Please specify args in augmentations" img_w, img_h = self.args["img_w"], self.args["img_h"] orig_w, orig_h = obtain_image_size(data_dict, self.input_keys) scaling_ratio = max((img_w / orig_w), (img_h / orig_h)) target_size = (int(scaling_ratio * orig_h + 0.5), int(scaling_ratio * orig_w + 0.5)) assert ( target_size[0] >= img_h and target_size[1] >= img_w ), f"Resize error. orig {(orig_w, orig_h)} desire {(img_w, img_h)} compute {target_size}" for inp_key, out_key in zip(self.input_keys, self.output_keys): data_dict[out_key] = transforms_F.resize( data_dict[inp_key], size=target_size, # type: ignore interpolation=getattr(self.args, "interpolation", transforms_F.InterpolationMode.BICUBIC), antialias=True, ) if out_key != inp_key: del data_dict[inp_key] return data_dict class CenterCrop(Augmentor): def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None: super().__init__(input_keys, output_keys, args) def __call__(self, data_dict: dict) -> dict: r"""Performs center crop. Args: data_dict (dict): Input data dict Returns: data_dict (dict): Output dict where images are center cropped. We also save the cropping parameters in the aug_params dict so that it will be used by other transforms. """ assert ( (self.args is not None) and ("img_w" in self.args) and ("img_h" in self.args) ), "Please specify size in args" img_w, img_h = self.args["img_w"], self.args["img_h"] orig_w, orig_h = obtain_image_size(data_dict, self.input_keys) for key in self.input_keys: data_dict[key] = transforms_F.center_crop(data_dict[key], [img_h, img_w]) # We also add the aug params we use. This will be useful for other transforms crop_x0 = (orig_w - img_w) // 2 crop_y0 = (orig_h - img_h) // 2 cropping_params = { "resize_w": orig_w, "resize_h": orig_h, "crop_x0": crop_x0, "crop_y0": crop_y0, "crop_w": img_w, "crop_h": img_h, } if "aug_params" not in data_dict: data_dict["aug_params"] = dict() data_dict["aug_params"]["cropping"] = cropping_params data_dict["padding_mask"] = torch.zeros((1, cropping_params["crop_h"], cropping_params["crop_w"])) return data_dict class Normalize(Augmentor): def __init__(self, input_keys: list, output_keys: Optional[list] = None, args: Optional[dict] = None) -> None: super().__init__(input_keys, output_keys, args) def __call__(self, data_dict: dict) -> dict: r"""Performs data normalization. Args: data_dict (dict): Input data dict Returns: data_dict (dict): Output dict where images are center cropped. """ assert self.args is not None, "Please specify args" mean = self.args["mean"] std = self.args["std"] for key in self.input_keys: if isinstance(data_dict[key], torch.Tensor): data_dict[key] = data_dict[key].to(dtype=torch.get_default_dtype()).div(255) else: data_dict[key] = transforms_F.to_tensor(data_dict[key]) # division by 255 is applied in to_tensor() data_dict[key] = transforms_F.normalize(tensor=data_dict[key], mean=mean, std=std) return data_dict