# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from megatron.core import ModelParallelConfig, parallel_state from torch.distributed import _functional_collectives as funcol from torch.distributed._functional_collectives import all_reduce from cosmos_predict1.autoregressive.modules.linear import ColumnParallelLinear, RowParallelLinear def compute_llama3_ffn_hidden_dim(dim: int, multiple_of: int, ffn_dim_multiplier: float) -> int: """ Computes the feedforward network dimensionality. Args: dim (int): The embedding dimensionality. multiple_of (int): The multiple to round up the hidden dimensionality. ffn_dim_multiplier (float): The multiplier for the hidden dimensionality. Returns: The feedforward network dimensionality. """ hidden_dim = 4 * dim hidden_dim = int(2 * hidden_dim / 3) # custom dim factor hidden_dim = int(ffn_dim_multiplier * hidden_dim) # Round up hidden dimensionality to the nearest multiple return multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) class MLP(nn.Module): def __init__( self, dim: int, hidden_dim: int, tensor_parallel_size: int = 1, ): """ Initializes the multilayer perceptron (MLP) module. Args: dim: The input and output dimensionality. hidden_dim: The dimensionality of the hidden layer. """ super().__init__() self.tp_size = tensor_parallel_size self.w1 = nn.Linear(dim, hidden_dim // self.tp_size, bias=False) self.w2 = nn.Linear(hidden_dim // self.tp_size, dim, bias=False) self.w3 = nn.Linear(dim, hidden_dim // self.tp_size, bias=False) def forward(self, x: torch.Tensor) -> torch.Tensor: """ Performs the forward pass of the MLP module. Args: x: The input tensor of shape (batch_size, dim). Returns: The output tensor of shape (batch_size, dim). """ output = self.w2(F.silu(self.w1(x)) * self.w3(x)) if self.tp_size > 1: output = all_reduce(output, "sum", group=parallel_state.get_tensor_model_parallel_group()) return output class TrainingMLP(nn.Module): def __init__( self, dim: int, hidden_dim: int, hidden_dropout: float = 0.0, set_parallel_mode: bool = False, model_parallel: Optional[ModelParallelConfig] = None, inference: bool = False, ): """ Initializes the multilayer perceptron (MLP) module. Args: dim: The input and output dimensionality. hidden_dim: The dimensionality of the hidden layer. hidden_dropout: Dropout after the attention and feed-forward layers (following TransformerEngine's implementation in its TransformerLayer class). set_parallel_mode: Whether to use column and row parallel linear layers. model_parallel: The model parallel configuration. inference: Whether the model is used for inference. """ super().__init__() self.hidden_dropout = hidden_dropout if model_parallel and model_parallel.tensor_model_parallel_size > 1: self.tp_size = model_parallel.tensor_model_parallel_size else: self.tp_size = 1 if set_parallel_mode and not inference: kwargs = {"bias": False, "init_method": lambda x: x, "config": model_parallel} # Using column and row parallel linear layers self.w1 = ColumnParallelLinear(dim, hidden_dim, gather_output=False, **kwargs) self.w2 = RowParallelLinear(hidden_dim, dim, input_is_parallel=True, skip_bias_add=True, **kwargs) self.w3 = ColumnParallelLinear(dim, hidden_dim, gather_output=False, **kwargs) else: self.w1 = nn.Linear(dim, hidden_dim // self.tp_size, bias=False) self.w2 = nn.Linear(hidden_dim // self.tp_size, dim, bias=False) self.w3 = nn.Linear(dim, hidden_dim // self.tp_size, bias=False) self.inference = inference def forward(self, x: torch.Tensor) -> torch.Tensor: """ Performs the forward pass of the MLP module. Args: x: The input tensor of shape (batch_size, dim). Returns: The output tensor of shape (batch_size, dim). """ x = F.dropout(x, p=self.hidden_dropout, training=self.training) output = self.w2(F.silu(self.w1(x)) * self.w3(x)) output = F.dropout(output, p=self.hidden_dropout, training=self.training) if self.inference and self.tp_size > 1: output = funcol.all_reduce(output, "sum", group=parallel_state.get_tensor_model_parallel_group()) return output def init_weights(self, init_std: float): """ Initializes the weights of the MLP module. """ nn.init.trunc_normal_(self.w1.weight, mean=0.0, std=0.02) for linear in (self.w2, self.w3): nn.init.trunc_normal_(linear.weight, mean=0.0, std=init_std)