# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple import torch from torch.nn.attention import SDPBackend, sdpa_kernel from cosmos_predict1.autoregressive.networks.transformer import Transformer def sample_top_p(logits, temperature, top_p, return_probs: bool = False): """ Perform top-p (nucleus) sampling on a probability distribution. Args: logits (torch.Tensor): Logits of the probability distribution. temperature (float): Temperature for sampling. top_p (float): Probability threshold for top-p sampling. Returns: torch.Tensor: Sampled token indices. Note: Top-p sampling selects the smallest set of tokens whose cumulative probability mass exceeds the threshold p. The distribution is renormalized based on the selected tokens. """ probs = torch.softmax(logits[:, -1, :] / temperature, dim=-1) # Sort the probabilities in descending order and get their indices. probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) # Compute the cumulative sum of the sorted probabilities. probs_sum = torch.cumsum(probs_sort, dim=-1) # Create a mask where the cumulative probability exceeds the threshold p. mask = probs_sum - probs_sort > top_p # Set the probabilities that exceed the threshold to 0. probs_sort[mask] = 0.0 # Renormalize the remaining probabilities so they sum to 1. probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) # Sample from the renormalized probability distribution. # next_token = torch.multinomial(probs_sort, num_samples=1) next_token = multinomial_sample_one_no_sync(probs_sort, dtype=torch.int64) # Gather the indices of the sampled tokens. next_token = torch.gather(probs_idx, -1, next_token) if return_probs: # Initialize a tensor for unsorted probabilities probs_unsorted = torch.zeros_like(probs_sort) # Scatter the sorted probabilities back to their original order probs_unsorted.scatter_(-1, probs_idx, probs_sort) else: probs_unsorted = None return next_token, probs_unsorted def multinomial_sample_one_no_sync(probs_sort, dtype=torch.int): """ Multinomial sampling without a cuda synchronization. Source: https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py """ q = torch.empty_like(probs_sort).exponential_(1) return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=dtype) def logits_to_probs( logits, temperature: float = 1.0, top_k: Optional[int] = None, ): logits = logits / max(temperature, 1e-5) if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) pivot = v.select(-1, -1).unsqueeze(-1) logits = torch.where(logits < pivot, -float("Inf"), logits) probs = torch.nn.functional.softmax(logits, dim=-1) return probs def sample_top_k(logits, temperature: float = 1.0, top_k: Optional[int] = None): """ Sample from the logits using top-k sampling. Source: https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py """ # logits: [batch_size, seq_len, vocab_size] if temperature == 0.0: idx_next = torch.argmax(logits[:, -1, :], dim=-1, keepdim=True) probs = None else: probs = logits_to_probs(logits[:, -1, :], temperature, top_k) idx_next = multinomial_sample_one_no_sync(probs) return idx_next, probs def prefill( model: Transformer, input_pos: torch.Tensor, tokens: torch.Tensor = None, token_embeddings: torch.Tensor = None, temperature: float = 1.0, top_k: Optional[int] = None, top_p: Optional[float] = None, **kwargs, ) -> torch.Tensor: logits = model(tokens=tokens, token_embeddings=token_embeddings, input_pos=input_pos, **kwargs) # Only top-p or top-k can be provided assert ( top_p is None or top_k is None ), "Only one of top-p or top-k can be provided, got top-p={top_p} and top-k={top_k}" if top_p is not None: return sample_top_p(logits, temperature=temperature, top_p=top_p)[0] else: return sample_top_k(logits, temperature=temperature, top_k=top_k)[0] def decode_one_token( model: Transformer, tokens: torch.Tensor, input_pos: torch.Tensor, temperature: float = 1.0, top_k: Optional[int] = None, top_p: Optional[float] = None, **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Decode a single token from the autoregressive model. """ logits = model(tokens=tokens, input_pos=input_pos, **kwargs) if top_p is not None: return sample_top_p(logits, temperature=temperature, top_p=top_p) else: return sample_top_k(logits, temperature=temperature, top_k=top_k) def decode_n_tokens( model: Transformer, cur_token: torch.Tensor, input_pos: torch.Tensor, num_new_tokens: int, stop_tokens: torch.Tensor = None, temperature: float = 1.0, top_p: Optional[float] = None, top_k: Optional[int] = None, return_probs: bool = False, decode_one_token_function=decode_one_token, **kwargs, ): """ Decode n tokens from the autoregressive model. Adapted from https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py """ new_tokens, new_probs = [], [] batch_size = cur_token.shape[0] assert ( top_p is None or top_k is None ), "Only one of top-p or top-k can be provided, got top-p={top_p} and top-k={top_k}" if stop_tokens is not None: # Indicator for whether the EOS token (stop token) has been reached for each sample in the batch eos_reached = torch.tensor([False] * batch_size, device="cuda") for t in range(num_new_tokens): with sdpa_kernel([SDPBackend.MATH]): # Actually better for Inductor to codegen attention here next_token, next_prob = decode_one_token_function( model, tokens=cur_token, input_pos=input_pos, temperature=temperature, top_k=top_k, top_p=top_p, **kwargs, ) input_pos += 1 if stop_tokens is not None and len(stop_tokens) > 0: eos_reached = eos_reached | (torch.isin(next_token, stop_tokens)) if eos_reached.all(): break new_tokens.append(next_token.clone()) if return_probs: new_probs.append(next_prob.clone()) cur_token = next_token.clone() if return_probs: return new_tokens, new_probs else: return new_tokens