# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import torch from transformers import AutoModelForCausalLM, AutoTokenizer from cosmos_predict1.auxiliary.guardrail.common.core import ContentSafetyGuardrail, GuardrailRunner from cosmos_predict1.auxiliary.guardrail.llamaGuard3.categories import UNSAFE_CATEGORIES from cosmos_predict1.utils import log, misc SAFE = misc.Color.green("SAFE") UNSAFE = misc.Color.red("UNSAFE") class LlamaGuard3(ContentSafetyGuardrail): def __init__( self, checkpoint_dir: str, device="cuda" if torch.cuda.is_available() else "cpu", ) -> None: self.checkpoint_dir = checkpoint_dir self.device = device self.dtype = torch.bfloat16 model_id = "meta-llama/Llama-Guard-3-8B" model_dir = os.path.join(self.checkpoint_dir, model_id) self.model = AutoModelForCausalLM.from_pretrained(model_dir) self.tokenizer = AutoTokenizer.from_pretrained(model_dir) self.model.to(self.device, dtype=self.dtype).eval() def get_llamaGuard3_block_message(self, moderation_output: str) -> str: """Extract the blocked category from the Llama Guard 3 model output.""" block_msg = "Prompt blocked by Llama Guard 3." try: lines = moderation_output.splitlines() categories_detected = [] for line in lines[1:]: line_stripped = line.split("<|eot_id|>")[0].strip() for catagory in line_stripped.split(","): catagory = catagory.strip() if catagory not in UNSAFE_CATEGORIES: log.warning(f"Unrecognized category from moderation output: {catagory}") else: categories_detected.append(catagory) if len(categories_detected) > 0: blocked_catagories = ", ".join([UNSAFE_CATEGORIES[catagory][:-1] for catagory in categories_detected]) block_msg = f"{block_msg} Violations: {blocked_catagories}." except Exception as e: log.warning(f"Unable to extract blocked category from Llama Guard 3 output: {e}") return block_msg def filter_llamaGuard3_output(self, prompt: str) -> tuple[bool, str]: """Filter the Llama Guard 3 model output and return the safety status and message.""" conversation = [{"role": "user", "content": prompt}] input_ids = self.tokenizer.apply_chat_template( conversation, categories=UNSAFE_CATEGORIES, return_tensors="pt" ).to("cuda") prompt_len = input_ids.shape[1] output = self.model.generate( input_ids=input_ids, max_new_tokens=100, return_dict_in_generate=True, pad_token_id=0, ) generated_tokens = output.sequences[:, prompt_len:] moderation_output = self.tokenizer.decode(generated_tokens[0], skip_special_tokens=False).strip() if "unsafe" in moderation_output.lower(): block_msg = self.get_llamaGuard3_block_message(moderation_output) return False, block_msg else: return True, "" def is_safe(self, prompt: str) -> tuple[bool, str]: """Check if the input prompt is safe according to the Llama Guard 3 model.""" try: return self.filter_llamaGuard3_output(prompt) except Exception as e: log.error(f"Unexpected error occurred when running Llama Guard 3 guardrail: {e}") return True, "Unexpected error occurred when running Llama Guard 3 guardrail." def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--prompt", type=str, required=True, help="Input prompt") parser.add_argument( "--checkpoint_dir", type=str, help="Path to the Llama Guard 3 checkpoint folder", ) return parser.parse_args() def main(args): llamaGuard3 = LlamaGuard3(checkpoint_dir=args.checkpoint_dir) runner = GuardrailRunner(safety_models=[llamaGuard3]) with misc.timer("Llama Guard 3 safety check"): safety, message = runner.run_safety_check(args.prompt) log.info(f"Input is: {'SAFE' if safety else 'UNSAFE'}") log.info(f"Message: {message}") if not safety else None if __name__ == "__main__": args = parse_args() main(args)