# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from hydra.core.config_store import ConfigStore from cosmos_predict1.diffusion.networks.general_dit_video_conditioned import VideoExtendGeneralDIT from cosmos_predict1.diffusion.training.utils.peft.lora_config import get_fa_ca_qv_lora_config from cosmos_predict1.utils.lazy_config import LazyCall as L from cosmos_predict1.utils.lazy_config import LazyDict Cosmos_Predict1_Video2World_7B: LazyDict = LazyDict( dict( defaults=[ {"override /net": "faditv2_7b"}, {"override /conditioner": "video_cond"}, {"override /tokenizer": "cosmos_diffusion_tokenizer_res720_comp8x8x8_t121_ver092624"}, "_self_", ], model=dict( latent_shape=[ 16, 16, 88, 160, ], conditioner=dict(video_cond_bool=dict()), net=L(VideoExtendGeneralDIT)( rope_h_extrapolation_ratio=1.0, rope_w_extrapolation_ratio=1.0, rope_t_extrapolation_ratio=2.0, ), ), job=dict(group="Video2World", name="Cosmos_Predict1_Video2World_7B"), ) ) Cosmos_Predict1_Video2World_14B: LazyDict = LazyDict( dict( defaults=[ {"override /net": "faditv2_14b"}, {"override /conditioner": "video_cond"}, {"override /tokenizer": "cosmos_diffusion_tokenizer_res720_comp8x8x8_t121_ver092624"}, "_self_", ], model=dict( latent_shape=[ 16, 16, 88, 160, ], conditioner=dict(video_cond_bool=dict()), net=L(VideoExtendGeneralDIT)( rope_h_extrapolation_ratio=2.0, rope_t_extrapolation_ratio=2.0, rope_w_extrapolation_ratio=2.0, extra_h_extrapolation_ratio=2.0, extra_t_extrapolation_ratio=2.0, extra_w_extrapolation_ratio=2.0, ), ), job=dict(group="Video2World", name="Cosmos_Predict1_Video2World_14B"), ) ) Cosmos_Predict1_Video2World_7B_Post_trained: LazyDict = LazyDict( dict( defaults=[ "/experiment/Cosmos_Predict1_Video2World_7B", ], job=dict( name="Cosmos_Predict1_Video2World_7B_Post_trained", ), ) ) Cosmos_Predict1_Video2World_7B_Post_trained_4gpu_80gb: LazyDict = LazyDict( dict( defaults=[ "/experiment/Cosmos_Predict1_Video2World_7B", ], job=dict( name="Cosmos_Predict1_Video2World_7B_Post_trained_4gpu_80gb", ), model=dict( latent_shape=[ 16, # Latent channel dim 16, # Latent temporal dim 48, # Latent height dim 48, # Latent width dim ], tokenizer=dict( video_vae=dict(pixel_chunk_duration=121, spatial_resolution="384"), ), ), ) ) Cosmos_Predict1_Video2World_7B_Post_trained_8gpu_40gb: LazyDict = LazyDict( dict( defaults=[ "/experiment/Cosmos_Predict1_Video2World_7B", ], job=dict( name="Cosmos_Predict1_Video2World_7B_Post_trained_8gpu_40gb", ), model=dict( latent_shape=[ 16, # Latent channel dim 16, # Latent temporal dim 48, # Latent height dim 48, # Latent width dim ], tokenizer=dict( video_vae=dict(pixel_chunk_duration=25, spatial_resolution="384"), ), ), ) ) Cosmos_Predict1_Video2World_7B_Post_trained_4gpu_40gb: LazyDict = LazyDict( dict( defaults=[ "/experiment/Cosmos_Predict1_Video2World_7B", ], job=dict( name="Cosmos_Predict1_Video2World_7B_Post_trained_4gpu_40gb", ), model=dict( latent_shape=[ 16, # Latent channel dim 16, # Latent temporal dim 24, # Latent height dim 24, # Latent width dim ], tokenizer=dict( # video_vae=dict(pixel_chunk_duration=17, spatial_resolution="384"), video_vae=dict(pixel_chunk_duration=25, spatial_resolution="384"), ), ), ) ) Cosmos_Predict1_Video2World_14B_Post_trained: LazyDict = LazyDict( dict( defaults=[ "/experiment/Cosmos_Predict1_Video2World_14B", ], job=dict( name="Cosmos_Predict1_Video2World_14B_Post_trained", ), ) ) Cosmos_Predict1_Video2World_7B_Post_trained_lora: LazyDict = LazyDict( dict( defaults=[ "/experiment/Cosmos_Predict1_Video2World_7B_Post_trained", ], job=dict( name="Cosmos_Predict1_Video2World_7B_Post_trained_lora", ), model=dict( peft_control=get_fa_ca_qv_lora_config(first_nblocks=27, rank=8, scale=1), ), ) ) cs = ConfigStore.instance() for _item in [ Cosmos_Predict1_Video2World_7B, Cosmos_Predict1_Video2World_14B, Cosmos_Predict1_Video2World_7B_Post_trained, Cosmos_Predict1_Video2World_14B_Post_trained, Cosmos_Predict1_Video2World_7B_Post_trained_4gpu_80gb, Cosmos_Predict1_Video2World_7B_Post_trained_8gpu_40gb, Cosmos_Predict1_Video2World_7B_Post_trained_4gpu_40gb, Cosmos_Predict1_Video2World_7B_Post_trained_lora, ]: cs.store(group="experiment", package="_global_", name=_item["job"]["name"], node=_item)