# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Union import torch from einops import rearrange from torch import Tensor from cosmos_predict1.diffusion.model.model_t2w import DiffusionT2WModel from cosmos_predict1.diffusion.module.parallel import cat_outputs_cp, split_inputs_cp from cosmos_predict1.utils import log, misc class DiffusionMultiviewT2WModel(DiffusionT2WModel): def __init__(self, config): super().__init__(config) self.n_views = config.net.n_views @torch.no_grad() def encode(self, state: torch.Tensor) -> torch.Tensor: state = rearrange(state, "B C (V T) H W -> (B V) C T H W", V=self.n_views) encoded_state = self.tokenizer.encode(state) encoded_state = rearrange(encoded_state, "(B V) C T H W -> B C (V T) H W", V=self.n_views) * self.sigma_data return encoded_state @torch.no_grad() def decode(self, latent: torch.Tensor) -> torch.Tensor: latent = rearrange(latent, "B C (V T) H W -> (B V) C T H W", V=self.n_views) decoded_state = self.tokenizer.decode(latent / self.sigma_data) decoded_state = rearrange(decoded_state, "(B V) C T H W -> B C (V T) H W", V=self.n_views) return decoded_state def generate_samples_from_batch( self, data_batch: dict, guidance: float = 1.5, seed: int = 1, state_shape: tuple | None = None, n_sample: int | None = 1, is_negative_prompt: bool = False, num_steps: int = 35, ) -> Tensor: """Generate samples from a data batch using diffusion sampling. This function generates samples from either image or video data batches using diffusion sampling. It handles both conditional and unconditional generation with classifier-free guidance. Args: data_batch (dict): Raw data batch from the training data loader guidance (float, optional): Classifier-free guidance weight. Defaults to 1.5. seed (int, optional): Random seed for reproducibility. Defaults to 1. state_shape (tuple | None, optional): Shape of the state tensor. Uses self.state_shape if None. Defaults to None. n_sample (int | None, optional): Number of samples to generate. Defaults to 1. is_negative_prompt (bool, optional): Whether to use negative prompt for unconditional generation. Defaults to False. num_steps (int, optional): Number of diffusion sampling steps. Defaults to 35. Returns: Tensor: Generated samples after diffusion sampling """ condition, uncondition = self._get_conditions(data_batch, is_negative_prompt) self.scheduler.set_timesteps(num_steps) xt = torch.randn(size=(n_sample,) + tuple(state_shape)) * self.scheduler.init_noise_sigma to_cp = self.net.is_context_parallel_enabled if to_cp: xt = rearrange(xt, "B C (V T) H W -> (B V) C T H W", V=self.n_views) xt = split_inputs_cp(x=xt, seq_dim=2, cp_group=self.net.cp_group) xt = rearrange(xt, "(B V) C T H W -> B C (V T) H W", V=self.n_views) for t in self.scheduler.timesteps: xt = xt.to(**self.tensor_kwargs) xt_scaled = self.scheduler.scale_model_input(xt, timestep=t) # Predict the noise residual t = t.to(**self.tensor_kwargs) net_output_cond = self.net(x=xt_scaled, timesteps=t, **condition.to_dict()) net_output_uncond = self.net(x=xt_scaled, timesteps=t, **uncondition.to_dict()) net_output = net_output_cond + guidance * (net_output_cond - net_output_uncond) # Compute the previous noisy sample x_t -> x_t-1 xt = self.scheduler.step(net_output, t, xt).prev_sample samples = xt if to_cp: samples = rearrange(samples, "B C (V T) H W -> (B V) C T H W", V=self.n_views) samples = cat_outputs_cp(samples, seq_dim=2, cp_group=self.net.cp_group) samples = rearrange(samples, "(B V) C T H W -> B C (V T) H W", V=self.n_views) return samples