# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import numpy as np import torch from einops import rearrange, repeat from torch import nn from torch.distributed import ProcessGroup, get_process_group_ranks from cosmos_predict1.diffusion.module.attention import normalize from cosmos_predict1.diffusion.module.parallel import split_inputs_cp from cosmos_predict1.diffusion.module.timm import trunc_normal_ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2.0 omega = 1.0 / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb class VideoPositionEmb(nn.Module): def __init__(self): super().__init__() self.cp_group = None def enable_context_parallel(self, cp_group: ProcessGroup): self.cp_group = cp_group def disable_context_parallel(self): self.cp_group = None def forward(self, x_B_T_H_W_C: torch.Tensor, fps=Optional[torch.Tensor]) -> torch.Tensor: """ It delegates the embedding generation to generate_embeddings function. """ B_T_H_W_C = x_B_T_H_W_C.shape if self.cp_group is not None: cp_ranks = get_process_group_ranks(self.cp_group) cp_size = len(cp_ranks) B, T, H, W, C = B_T_H_W_C B_T_H_W_C = (B, T * cp_size, H, W, C) embeddings = self.generate_embeddings(B_T_H_W_C, fps=fps) if self.cp_group is not None: if isinstance(self, VideoRopePosition3DEmb): seq_dim = 0 else: seq_dim = 1 embeddings = split_inputs_cp(x=embeddings, seq_dim=seq_dim, cp_group=self.cp_group) return embeddings def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]): raise NotImplementedError class VideoRopePosition3DEmb(VideoPositionEmb): def __init__( self, *, # enforce keyword arguments head_dim: int, len_h: int, len_w: int, len_t: int, base_fps: int = 24, h_extrapolation_ratio: float = 1.0, w_extrapolation_ratio: float = 1.0, t_extrapolation_ratio: float = 1.0, **kwargs, # used for compatibility with other positional embeddings; unused in this class ): del kwargs super().__init__() self.register_buffer("seq", torch.arange(max(len_h, len_w, len_t), dtype=torch.float)) self.base_fps = base_fps self.max_h = len_h self.max_w = len_w dim = head_dim dim_h = dim // 6 * 2 dim_w = dim_h dim_t = dim - 2 * dim_h assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}" self.register_buffer( "dim_spatial_range", torch.arange(0, dim_h, 2)[: (dim_h // 2)].float().cuda() / dim_h, persistent=False, ) self.register_buffer( "dim_temporal_range", torch.arange(0, dim_t, 2)[: (dim_t // 2)].float().cuda() / dim_t, persistent=False, ) self.h_ntk_factor = h_extrapolation_ratio ** (dim_h / (dim_h - 2)) self.w_ntk_factor = w_extrapolation_ratio ** (dim_w / (dim_w - 2)) self.t_ntk_factor = t_extrapolation_ratio ** (dim_t / (dim_t - 2)) def generate_embeddings( self, B_T_H_W_C: torch.Size, fps: Optional[torch.Tensor] = None, h_ntk_factor: Optional[float] = None, w_ntk_factor: Optional[float] = None, t_ntk_factor: Optional[float] = None, ): """ Generate embeddings for the given input size. Args: B_T_H_W_C (torch.Size): Input tensor size (Batch, Time, Height, Width, Channels). fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None. h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor. w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor. t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor. Returns: Not specified in the original code snippet. """ h_ntk_factor = h_ntk_factor if h_ntk_factor is not None else self.h_ntk_factor w_ntk_factor = w_ntk_factor if w_ntk_factor is not None else self.w_ntk_factor t_ntk_factor = t_ntk_factor if t_ntk_factor is not None else self.t_ntk_factor h_theta = 10000.0 * h_ntk_factor w_theta = 10000.0 * w_ntk_factor t_theta = 10000.0 * t_ntk_factor h_spatial_freqs = 1.0 / (h_theta**self.dim_spatial_range) w_spatial_freqs = 1.0 / (w_theta**self.dim_spatial_range) temporal_freqs = 1.0 / (t_theta**self.dim_temporal_range) B, T, H, W, _ = B_T_H_W_C uniform_fps = (fps is None) or (fps.min() == fps.max()) assert ( uniform_fps or B == 1 or T == 1 ), "For video batch, batch size should be 1 for non-uniform fps. For image batch, T should be 1" assert ( H <= self.max_h and W <= self.max_w ), f"Input dimensions (H={H}, W={W}) exceed the maximum dimensions (max_h={self.max_h}, max_w={self.max_w})" half_emb_h = torch.outer(self.seq[:H], h_spatial_freqs) half_emb_w = torch.outer(self.seq[:W], w_spatial_freqs) # apply sequence scaling in temporal dimension if fps is None: # image case assert T == 1, "T should be 1 for image batch." half_emb_t = torch.outer(self.seq[:T], temporal_freqs) else: half_emb_t = torch.outer(self.seq[:T] / fps[:1] * self.base_fps, temporal_freqs) em_T_H_W_D = torch.cat( [ repeat(half_emb_t, "t d -> t h w d", h=H, w=W), repeat(half_emb_h, "h d -> t h w d", t=T, w=W), repeat(half_emb_w, "w d -> t h w d", t=T, h=H), ] * 2, dim=-1, ) return rearrange(em_T_H_W_D, "t h w d -> (t h w) 1 1 d").float() class LearnablePosEmbAxis(VideoPositionEmb): def __init__( self, *, # enforce keyword arguments interpolation: str, model_channels: int, len_h: int, len_w: int, len_t: int, **kwargs, ): """ Args: interpolation (str): we curretly only support "crop", ideally when we need extrapolation capacity, we should adjust frequency or other more advanced methods. they are not implemented yet. """ del kwargs # unused super().__init__() self.interpolation = interpolation assert self.interpolation in ["crop"], f"Unknown interpolation method {self.interpolation}" self.pos_emb_h = nn.Parameter(torch.zeros(len_h, model_channels)) self.pos_emb_w = nn.Parameter(torch.zeros(len_w, model_channels)) self.pos_emb_t = nn.Parameter(torch.zeros(len_t, model_channels)) trunc_normal_(self.pos_emb_h, std=0.02) trunc_normal_(self.pos_emb_w, std=0.02) trunc_normal_(self.pos_emb_t, std=0.02) def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor: B, T, H, W, _ = B_T_H_W_C if self.interpolation == "crop": emb_h_H = self.pos_emb_h[:H] emb_w_W = self.pos_emb_w[:W] emb_t_T = self.pos_emb_t[:T] emb = ( repeat(emb_t_T, "t d-> b t h w d", b=B, h=H, w=W) + repeat(emb_h_H, "h d-> b t h w d", b=B, t=T, w=W) + repeat(emb_w_W, "w d-> b t h w d", b=B, t=T, h=H) ) assert list(emb.shape)[:4] == [B, T, H, W], f"bad shape: {list(emb.shape)[:4]} != {B, T, H, W}" else: raise ValueError(f"Unknown interpolation method {self.interpolation}") return normalize(emb, dim=-1, eps=1e-6) class MultiviewVideoPositionEmb(nn.Module): def __init__( self, ): super().__init__() self.cp_group = None def enable_context_parallel(self, cp_group: ProcessGroup): self.cp_group = cp_group def disable_context_parallel(self): self.cp_group = None def forward(self, x_B_T_H_W_C: torch.Tensor, fps=Optional[torch.Tensor]) -> torch.Tensor: """ With CP, the function assume that the input tensor is already split. It delegates the embedding generation to generate_embeddings function. """ B_T_H_W_C = x_B_T_H_W_C.shape if self.cp_group is not None: cp_ranks = get_process_group_ranks(self.cp_group) cp_size = len(cp_ranks) B, T, H, W, C = B_T_H_W_C B_T_H_W_C = (B, T * cp_size, H, W, C) embeddings = self.generate_embeddings(B_T_H_W_C, fps=fps) if self.cp_group is not None: if isinstance(self, MultiviewVideoRopePosition3DEmb): seq_dim = 1 embeddings = rearrange(embeddings, "(V T) H W D -> V (T H W) 1 1 D", V=self.n_views).float() # rearrange(em_T_H_W_D, "t h w d -> (t h w) 1 1 d").float() embeddings = split_inputs_cp(x=embeddings, seq_dim=seq_dim, cp_group=self.cp_group) embeddings = rearrange(embeddings, "V T 1 1 D -> (V T) 1 1 D", V=self.n_views).float() else: seq_dim = 1 embeddings = rearrange(embeddings, "B (V T) H W C -> (B V) T H W C", V=self.n_views) embeddings = split_inputs_cp(x=embeddings, seq_dim=seq_dim, cp_group=self.cp_group) embeddings = rearrange(embeddings, "(B V) T H W C -> B (V T) H W C", V=self.n_views) else: if isinstance(self, MultiviewVideoRopePosition3DEmb): embeddings = rearrange(embeddings, "t h w d -> (t h w) 1 1 d").float() return embeddings def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]): raise NotImplementedError class MultiviewVideoRopePosition3DEmb(MultiviewVideoPositionEmb): def __init__( self, *, # enforce keyword arguments head_dim: int, len_h: int, len_w: int, len_t: int, base_fps: int = 24, h_extrapolation_ratio: float = 1.0, w_extrapolation_ratio: float = 1.0, t_extrapolation_ratio: float = 1.0, n_views: int = 4, **kwargs, # used for compatibility with other positional embeddings; unused in this class ): del kwargs super().__init__() self.register_buffer("seq", torch.arange(max(len_h, len_w, len_t), dtype=torch.float)) self.base_fps = base_fps self.max_h = len_h self.max_w = len_w self.n_views = n_views dim = head_dim dim_h = dim // 6 * 2 dim_w = dim_h dim_t = dim - 2 * dim_h assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}" self.register_buffer( "dim_spatial_range", torch.arange(0, dim_h, 2)[: (dim_h // 2)].float().cuda() / dim_h, persistent=False, ) self.register_buffer( "dim_temporal_range", torch.arange(0, dim_t, 2)[: (dim_t // 2)].float().cuda() / dim_t, persistent=False, ) self.h_ntk_factor = h_extrapolation_ratio ** (dim_h / (dim_h - 2)) self.w_ntk_factor = w_extrapolation_ratio ** (dim_w / (dim_w - 2)) self.t_ntk_factor = t_extrapolation_ratio ** (dim_t / (dim_t - 2)) def generate_embedding_for_batch( self, B_T_H_W_C: torch.Size, fps: Optional[torch.Tensor] = None, h_ntk_factor: Optional[float] = None, w_ntk_factor: Optional[float] = None, t_ntk_factor: Optional[float] = None, ): """ Generate embeddings for the given input size. Args: B_T_H_W_C (torch.Size): Input tensor size (Batch, Time, Height, Width, Channels). fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None. h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor. Defaults to None. w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor. Defaults to None. t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor. Defaults to None. Returns: Not specified in the original code snippet. """ h_ntk_factor = h_ntk_factor if h_ntk_factor is not None else self.h_ntk_factor w_ntk_factor = w_ntk_factor if w_ntk_factor is not None else self.w_ntk_factor t_ntk_factor = t_ntk_factor if t_ntk_factor is not None else self.t_ntk_factor h_theta = 10000.0 * h_ntk_factor w_theta = 10000.0 * w_ntk_factor t_theta = 10000.0 * t_ntk_factor h_spatial_freqs = 1.0 / (h_theta**self.dim_spatial_range) w_spatial_freqs = 1.0 / (w_theta**self.dim_spatial_range) temporal_freqs = 1.0 / (t_theta**self.dim_temporal_range) B, T, H, W, _ = B_T_H_W_C uniform_fps = (fps is None) or (fps.min() == fps.max()) assert uniform_fps # only support uniform fps now assert ( uniform_fps or B == 1 or T == 1 ), "For video batch, batch size should be 1 for non-uniform fps. For image batch, T should be 1" assert ( H <= self.max_h and W <= self.max_w ), f"Input dimensions (H={H}, W={W}) exceed the maximum dimensions (max_h={self.max_h}, max_w={self.max_w}) configured for positional embedding. Please adjust the input size or increase the maximum dimensions in the model configuration." half_emb_h = torch.outer(self.seq[:H], h_spatial_freqs) half_emb_w = torch.outer(self.seq[:W], w_spatial_freqs) # apply sequence scaling in temporal dimension if fps is None: # image case assert T == 1, "T should be 1 for image batch." half_emb_t = torch.outer(self.seq[:T], temporal_freqs) else: half_emb_t = torch.outer(self.seq[:T] / fps[:1] * self.base_fps, temporal_freqs) em_T_H_W_D = torch.cat( [ repeat(half_emb_t, "t d -> t h w d", h=H, w=W), repeat(half_emb_h, "h d -> t h w d", t=T, w=W), repeat(half_emb_w, "w d -> t h w d", t=T, h=H), ] * 2, dim=-1, ) return em_T_H_W_D def generate_embeddings( self, B_T_H_W_C: torch.Size, fps: Optional[torch.Tensor] = None, h_ntk_factor: Optional[float] = None, w_ntk_factor: Optional[float] = None, t_ntk_factor: Optional[float] = None, ): """ Generate embeddings for the given input size. The camera view dimension is merged in the T dimension Args: B_T_H_W_C (torch.Size): Input tensor size (Batch, Time * Views, Height, Width, Channels). fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None. h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor. Defaults to None. w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor. Defaults to None. t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor. Defaults to None. Returns: Not specified in the original code snippet. """ B, T, H, W, C = B_T_H_W_C single_view_B_T_H_W_C = (B, T // self.n_views, H, W, C) em_T_H_W_D = torch.cat( [ self.generate_embedding_for_batch( single_view_B_T_H_W_C, fps=fps, h_ntk_factor=h_ntk_factor, w_ntk_factor=w_ntk_factor, t_ntk_factor=t_ntk_factor, ) for item in range(self.n_views) ], dim=0, ) return em_T_H_W_D class MultiviewSinCosPosEmbAxis(MultiviewVideoPositionEmb): def __init__( self, *, # enforce keyword arguments interpolation: str, model_channels: int, len_h: int, len_w: int, len_t: int, h_extrapolation_ratio: float = 1.0, w_extrapolation_ratio: float = 1.0, t_extrapolation_ratio: float = 1.0, n_views: int = 4, **kwargs, ): """ Args: interpolation (str): we curretly only support "crop", ideally when we need extrapolation capacity, we should adjust frequency or other more advanced methods. they are not implemented yet. """ del kwargs # unused self.n_views = n_views super().__init__() self.interpolation = interpolation assert self.interpolation in ["crop"], f"Unknown interpolation method {self.interpolation}" dim = model_channels dim_h = dim // 6 * 2 dim_w = dim_h dim_t = dim - 2 * dim_h assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}" # rescale pos id is equivalent to rescale frequency emb_h = get_1d_sincos_pos_embed_from_grid(dim_h, pos=np.arange(len_h) * 1.0 / h_extrapolation_ratio) emb_w = get_1d_sincos_pos_embed_from_grid(dim_w, pos=np.arange(len_w) * 1.0 / w_extrapolation_ratio) emb_t = get_1d_sincos_pos_embed_from_grid(dim_t, pos=np.arange(len_t) * 1.0 / t_extrapolation_ratio) self.register_buffer("pos_emb_h", torch.from_numpy(emb_h).float(), persistent=False) self.register_buffer("pos_emb_w", torch.from_numpy(emb_w).float(), persistent=False) self.register_buffer("pos_emb_t", torch.from_numpy(emb_t).float(), persistent=False) def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor]) -> torch.Tensor: B, T, H, W, C = B_T_H_W_C single_view_T = T // self.n_views if self.interpolation == "crop": emb_h_H = self.pos_emb_h[:H] emb_w_W = self.pos_emb_w[:W] emb_t_T = self.pos_emb_t[:single_view_T] emb = torch.cat( [ torch.cat( [ repeat(emb_t_T, "t d-> b t h w d", b=B, h=H, w=W), repeat(emb_h_H, "h d-> b t h w d", b=B, t=single_view_T, w=W), repeat(emb_w_W, "w d-> b t h w d", b=B, t=single_view_T, h=H), ], dim=-1, ) for _ in range(self.n_views) ], 1, ) assert list(emb.shape)[:4] == [B, T, H, W], f"bad shape: {list(emb.shape)[:4]} != {B, T, H, W}" return emb raise ValueError(f"Unknown interpolation method {self.interpolation}")