# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple import torch from einops import rearrange from torch import nn from torchvision import transforms from cosmos_predict1.diffusion.conditioner import DataType from cosmos_predict1.diffusion.module.blocks import GeneralDITTransformerBlock, PatchEmbed from cosmos_predict1.diffusion.module.parallel import split_inputs_cp from cosmos_predict1.diffusion.module.position_embedding import ( MultiviewSinCosPosEmbAxis, MultiviewVideoRopePosition3DEmb, ) from cosmos_predict1.diffusion.networks.general_dit import GeneralDIT from cosmos_predict1.utils import log class MultiviewGeneralDIT(GeneralDIT): def __init__( self, max_img_h: int, max_img_w: int, max_frames: int, in_channels: int, out_channels: int, patch_spatial: tuple, patch_temporal: int, concat_padding_mask: bool = True, # attention settings block_config: str = "FA-CA-MLP", model_channels: int = 768, num_blocks: int = 10, num_heads: int = 16, mlp_ratio: float = 4.0, block_x_format: str = "BTHWD", # cross attention settings crossattn_emb_channels: int = 1024, use_cross_attn_mask: bool = False, # positional embedding settings pos_emb_cls: str = "sincos", pos_emb_learnable: bool = False, pos_emb_interpolation: str = "crop", affline_emb_norm: bool = False, # whether or not to normalize the affine embedding use_adaln_lora: bool = False, adaln_lora_dim: int = 256, rope_h_extrapolation_ratio: float = 1.0, rope_w_extrapolation_ratio: float = 1.0, rope_t_extrapolation_ratio: float = 1.0, extra_per_block_abs_pos_emb: bool = True, extra_per_block_abs_pos_emb_type: str = "sincos", extra_h_extrapolation_ratio: float = 1.0, extra_w_extrapolation_ratio: float = 1.0, extra_t_extrapolation_ratio: float = 1.0, n_views: int = 3, view_condition_dim: int = 3, traj_condition_dim: int = 0, concat_view_embedding: bool = True, concat_traj_embedding: bool = False, add_repeat_frame_embedding: bool = False, ): self.n_views = n_views self.view_condition_dim = view_condition_dim self.concat_view_embedding = concat_view_embedding self.traj_condition_dim = traj_condition_dim self.concat_traj_embedding = concat_traj_embedding self.add_repeat_frame_embedding = add_repeat_frame_embedding super().__init__( max_img_h, max_img_w, max_frames, in_channels, out_channels, patch_spatial, patch_temporal, concat_padding_mask, block_config, model_channels, num_blocks, num_heads, mlp_ratio, block_x_format, crossattn_emb_channels, use_cross_attn_mask, pos_emb_cls, pos_emb_learnable, pos_emb_interpolation, affline_emb_norm, # whether or not to normalize the affine embedding use_adaln_lora, adaln_lora_dim, rope_h_extrapolation_ratio, rope_w_extrapolation_ratio, rope_t_extrapolation_ratio, extra_per_block_abs_pos_emb, extra_per_block_abs_pos_emb_type, extra_h_extrapolation_ratio, extra_w_extrapolation_ratio, extra_t_extrapolation_ratio, ) # reinit self.blocks del self.blocks self.blocks = nn.ModuleDict() for idx in range(self.num_blocks): self.blocks[f"block{idx}"] = GeneralDITTransformerBlock( x_dim=model_channels, context_dim=crossattn_emb_channels, num_heads=num_heads, block_config=block_config, mlp_ratio=mlp_ratio, x_format=self.block_x_format, use_adaln_lora=use_adaln_lora, adaln_lora_dim=adaln_lora_dim, n_views=self.n_views, ) self.view_embeddings = nn.Embedding(n_views, view_condition_dim) # Learnable embedding layer if self.concat_traj_embedding: self.traj_embeddings = nn.Linear(192, self.traj_condition_dim) # Learnable embedding layer if self.add_repeat_frame_embedding: self.repeat_frame_embedding = nn.Linear(1, view_condition_dim) # Learnable embedding layer self.initialize_weights() def build_patch_embed(self): ( concat_padding_mask, in_channels, patch_spatial, patch_temporal, model_channels, view_condition_dim, traj_condition_dim, ) = ( self.concat_padding_mask, self.in_channels, self.patch_spatial, self.patch_temporal, self.model_channels, self.view_condition_dim, self.traj_condition_dim, ) if self.concat_view_embedding: in_channels = in_channels + view_condition_dim if view_condition_dim > 0 else in_channels if self.concat_traj_embedding: in_channels = in_channels + traj_condition_dim if traj_condition_dim > 0 else in_channels in_channels = in_channels + 1 if concat_padding_mask else in_channels self.x_embedder = PatchEmbed( spatial_patch_size=patch_spatial, temporal_patch_size=patch_temporal, in_channels=in_channels, out_channels=model_channels, bias=False, ) def build_pos_embed(self): if self.pos_emb_cls == "rope3d": cls_type = MultiviewVideoRopePosition3DEmb else: raise ValueError(f"Unknown pos_emb_cls {self.pos_emb_cls}") log.critical(f"Building positional embedding with {self.pos_emb_cls} class, impl {cls_type}") kwargs = dict( model_channels=self.model_channels, len_h=self.max_img_h // self.patch_spatial, len_w=self.max_img_w // self.patch_spatial, len_t=self.max_frames // self.patch_temporal, max_fps=30, min_fps=1, is_learnable=self.pos_emb_learnable, interpolation=self.pos_emb_interpolation, head_dim=self.model_channels // self.num_heads, h_extrapolation_ratio=self.rope_h_extrapolation_ratio, w_extrapolation_ratio=self.rope_w_extrapolation_ratio, t_extrapolation_ratio=self.rope_t_extrapolation_ratio, n_views=self.n_views, ) self.pos_embedder = cls_type( **kwargs, ) if self.extra_per_block_abs_pos_emb: assert self.extra_per_block_abs_pos_emb_type in [ "sincos", ], f"Unknown extra_per_block_abs_pos_emb_type {self.extra_per_block_abs_pos_emb_type}" kwargs["h_extrapolation_ratio"] = self.extra_h_extrapolation_ratio kwargs["w_extrapolation_ratio"] = self.extra_w_extrapolation_ratio kwargs["t_extrapolation_ratio"] = self.extra_t_extrapolation_ratio self.extra_pos_embedder = MultiviewSinCosPosEmbAxis(**kwargs) def forward_before_blocks( self, x: torch.Tensor, timesteps: torch.Tensor, crossattn_emb: torch.Tensor, crossattn_mask: Optional[torch.Tensor] = None, fps: Optional[torch.Tensor] = None, image_size: Optional[torch.Tensor] = None, padding_mask: Optional[torch.Tensor] = None, scalar_feature: Optional[torch.Tensor] = None, data_type: Optional[DataType] = DataType.VIDEO, latent_condition: Optional[torch.Tensor] = None, latent_condition_sigma: Optional[torch.Tensor] = None, **kwargs, ) -> torch.Tensor: """ Args: x: (B, C, T, H, W) tensor of spatial-temp inputs timesteps: (B, ) tensor of timesteps crossattn_emb: (B, N, D) tensor of cross-attention embeddings crossattn_mask: (B, N) tensor of cross-attention masks """ trajectory = kwargs.get("trajectory", None) frame_repeat = kwargs.get("frame_repeat", None) del kwargs assert isinstance( data_type, DataType ), f"Expected DataType, got {type(data_type)}. We need discuss this flag later." original_shape = x.shape x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence( x, fps=fps, padding_mask=padding_mask, latent_condition=latent_condition, latent_condition_sigma=latent_condition_sigma, trajectory=trajectory, frame_repeat=frame_repeat, ) # logging affline scale information affline_scale_log_info = {} timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten()) affline_emb_B_D = timesteps_B_D affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach() if scalar_feature is not None: raise NotImplementedError("Scalar feature is not implemented yet.") timesteps_B_D = timesteps_B_D + scalar_feature.mean(dim=1) affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach() affline_emb_B_D = self.affline_norm(affline_emb_B_D) # for logging purpose self.affline_scale_log_info = affline_scale_log_info self.affline_emb = affline_emb_B_D self.crossattn_emb = crossattn_emb self.crossattn_mask = crossattn_mask if self.use_cross_attn_mask: crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool) # [B, 1, 1, length] else: crossattn_mask = None if self.blocks["block0"].x_format == "THWBD": x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D") if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange( extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D" ) crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D") if crossattn_mask: crossattn_mask = rearrange(crossattn_mask, "B M -> M B") elif self.blocks["block0"].x_format == "BTHWD": x = x_B_T_H_W_D else: raise ValueError(f"Unknown x_format {self.blocks[0].x_format}") output = { "x": x, "affline_emb_B_D": affline_emb_B_D, "crossattn_emb": crossattn_emb, "crossattn_mask": crossattn_mask, "rope_emb_L_1_1_D": rope_emb_L_1_1_D, "adaln_lora_B_3D": adaln_lora_B_3D, "original_shape": original_shape, "extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, } return output def prepare_embedded_sequence( self, x_B_C_T_H_W: torch.Tensor, fps: Optional[torch.Tensor] = None, padding_mask: Optional[torch.Tensor] = None, latent_condition: Optional[torch.Tensor] = None, latent_condition_sigma: Optional[torch.Tensor] = None, trajectory: Optional[torch.Tensor] = None, frame_repeat: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """ Prepares an embedded sequence tensor by applying positional embeddings and handling padding masks. Args: x_B_C_T_H_W (torch.Tensor): video fps (Optional[torch.Tensor]): Frames per second tensor to be used for positional embedding when required. If None, a default value (`self.base_fps`) will be used. padding_mask (Optional[torch.Tensor]): current it is not used Returns: Tuple[torch.Tensor, Optional[torch.Tensor]]: - A tensor of shape (B, T, H, W, D) with the embedded sequence. - An optional positional embedding tensor, returned only if the positional embedding class (`self.pos_emb_cls`) includes 'rope'. Otherwise, None. Notes: - If `self.concat_padding_mask` is True, a padding mask channel is concatenated to the input tensor. - The method of applying positional embeddings depends on the value of `self.pos_emb_cls`. - If 'rope' is in `self.pos_emb_cls` (case insensitive), the positional embeddings are generated using the `self.pos_embedder` with the shape [T, H, W]. - If "fps_aware" is in `self.pos_emb_cls`, the positional embeddings are generated using the `self.pos_embedder` with the fps tensor. - Otherwise, the positional embeddings are generated without considering fps. """ if self.concat_padding_mask: padding_mask = transforms.functional.resize( padding_mask, list(x_B_C_T_H_W.shape[-2:]), interpolation=transforms.InterpolationMode.NEAREST ) x_B_C_T_H_W = torch.cat( [x_B_C_T_H_W, padding_mask.unsqueeze(1).repeat(1, 1, x_B_C_T_H_W.shape[2], 1, 1)], dim=1 ) view_indices = torch.arange(self.n_views).to(x_B_C_T_H_W.device) # View indices [0, 1, ..., V-1] view_embedding = self.view_embeddings(view_indices) # Shape: [V, embedding_dim] view_embedding = rearrange(view_embedding, "V D -> D V") view_embedding = view_embedding.unsqueeze(0).unsqueeze(3).unsqueeze(4).unsqueeze(5) # Shape: [1, D, V, 1, 1, 1] if self.add_repeat_frame_embedding: if frame_repeat is None: frame_repeat = ( torch.zeros([x_B_C_T_H_W.shape[0], view_embedding.shape[1]]) .to(view_embedding.device) .to(view_embedding.dtype) ) frame_repeat_embedding = self.repeat_frame_embedding(frame_repeat.unsqueeze(-1)) frame_repeat_embedding = rearrange(frame_repeat_embedding, "B V D -> B D V") view_embedding = view_embedding + frame_repeat_embedding.unsqueeze(3).unsqueeze(4).unsqueeze(5) x_B_C_V_T_H_W = rearrange(x_B_C_T_H_W, "B C (V T) H W -> B C V T H W", V=self.n_views) view_embedding = view_embedding.expand( x_B_C_V_T_H_W.shape[0], view_embedding.shape[1], view_embedding.shape[2], x_B_C_V_T_H_W.shape[3], x_B_C_V_T_H_W.shape[4], x_B_C_V_T_H_W.shape[5], ) # Shape: [B, V, 3, t, H, W] if self.concat_traj_embedding: traj_emb = self.traj_embeddings(trajectory) traj_emb = traj_emb.unsqueeze(2).unsqueeze(3).unsqueeze(4).unsqueeze(5) traj_emb = traj_emb.expand( x_B_C_V_T_H_W.shape[0], traj_emb.shape[1], view_embedding.shape[2], x_B_C_V_T_H_W.shape[3], x_B_C_V_T_H_W.shape[4], x_B_C_V_T_H_W.shape[5], ) # Shape: [B, V, 3, t, H, W] x_B_C_V_T_H_W = torch.cat([x_B_C_V_T_H_W, view_embedding, traj_emb], dim=1) else: x_B_C_V_T_H_W = torch.cat([x_B_C_V_T_H_W, view_embedding], dim=1) x_B_C_T_H_W = rearrange(x_B_C_V_T_H_W, " B C V T H W -> B C (V T) H W", V=self.n_views) x_B_T_H_W_D = self.x_embedder(x_B_C_T_H_W) if self.extra_per_block_abs_pos_emb: extra_pos_emb = self.extra_pos_embedder(x_B_T_H_W_D, fps=fps) else: extra_pos_emb = None if "rope" in self.pos_emb_cls.lower(): return x_B_T_H_W_D, self.pos_embedder(x_B_T_H_W_D, fps=fps), extra_pos_emb if "fps_aware" in self.pos_emb_cls: x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D, fps=fps) # [B, T, H, W, D] else: x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D) # [B, T, H, W, D] return x_B_T_H_W_D, None, extra_pos_emb