# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional import torch from einops import rearrange from torch import nn from cosmos_predict1.diffusion.conditioner import DataType from cosmos_predict1.diffusion.module.blocks import TimestepEmbedding, Timesteps from cosmos_predict1.diffusion.module.parallel import split_inputs_cp from cosmos_predict1.diffusion.networks.general_dit import GeneralDIT from cosmos_predict1.utils import log class VideoExtendGeneralDIT(GeneralDIT): def __init__(self, *args, in_channels=16 + 1, add_augment_sigma_embedding=False, **kwargs): self.add_augment_sigma_embedding = add_augment_sigma_embedding # extra channel for video condition mask super().__init__(*args, in_channels=in_channels, **kwargs) log.debug(f"VideoExtendGeneralDIT in_channels: {in_channels}") def build_additional_timestamp_embedder(self): super().build_additional_timestamp_embedder() if self.add_augment_sigma_embedding: log.info("Adding augment sigma embedding") self.augment_sigma_embedder = nn.Sequential( Timesteps(self.model_channels), TimestepEmbedding(self.model_channels, self.model_channels, use_adaln_lora=self.use_adaln_lora), ) def initialize_weights(self): if self.add_augment_sigma_embedding: # Initialize timestep embedding for augment sigma nn.init.normal_(self.augment_sigma_embedder[1].linear_1.weight, std=0.02) if self.augment_sigma_embedder[1].linear_1.bias is not None: nn.init.constant_(self.augment_sigma_embedder[1].linear_1.bias, 0) nn.init.normal_(self.augment_sigma_embedder[1].linear_2.weight, std=0.02) if self.augment_sigma_embedder[1].linear_2.bias is not None: nn.init.constant_(self.augment_sigma_embedder[1].linear_2.bias, 0) super().initialize_weights() # Call this last since it wil call TP weight init def forward( self, x: torch.Tensor, timesteps: torch.Tensor, crossattn_emb: torch.Tensor, crossattn_mask: Optional[torch.Tensor] = None, fps: Optional[torch.Tensor] = None, image_size: Optional[torch.Tensor] = None, padding_mask: Optional[torch.Tensor] = None, scalar_feature: Optional[torch.Tensor] = None, data_type: Optional[DataType] = DataType.VIDEO, video_cond_bool: Optional[torch.Tensor] = None, condition_video_indicator: Optional[torch.Tensor] = None, condition_video_input_mask: Optional[torch.Tensor] = None, condition_video_augment_sigma: Optional[torch.Tensor] = None, condition_video_pose: Optional[torch.Tensor] = None, **kwargs, ) -> torch.Tensor: """Forward pass of the video-conditioned DIT model. Args: x: Input tensor of shape (B, C, T, H, W) timesteps: Timestep tensor of shape (B,) crossattn_emb: Cross attention embeddings of shape (B, N, D) crossattn_mask: Optional cross attention mask of shape (B, N) fps: Optional frames per second tensor image_size: Optional image size tensor padding_mask: Optional padding mask tensor scalar_feature: Optional scalar features tensor data_type: Type of data being processed (default: DataType.VIDEO) video_cond_bool: Optional video conditioning boolean tensor condition_video_indicator: Optional video condition indicator tensor condition_video_input_mask: Required mask tensor for video data type condition_video_augment_sigma: Optional sigma values for conditional input augmentation **kwargs: Additional keyword arguments Returns: torch.Tensor: Output tensor """ B, C, T, H, W = x.shape if data_type == DataType.VIDEO: assert condition_video_input_mask is not None, "condition_video_input_mask is required for video data type" if self.cp_group is not None: condition_video_input_mask = split_inputs_cp( condition_video_input_mask, seq_dim=2, cp_group=self.cp_group ) condition_video_indicator = split_inputs_cp( condition_video_indicator, seq_dim=2, cp_group=self.cp_group ) if condition_video_pose is not None: condition_video_pose = split_inputs_cp(condition_video_pose, seq_dim=2, cp_group=self.cp_group) input_list = [x, condition_video_input_mask] if condition_video_pose is not None: input_list.append(condition_video_pose) x = torch.cat( input_list, dim=1, ) return super().forward( x=x, timesteps=timesteps, crossattn_emb=crossattn_emb, crossattn_mask=crossattn_mask, fps=fps, image_size=image_size, padding_mask=padding_mask, scalar_feature=scalar_feature, data_type=data_type, condition_video_augment_sigma=condition_video_augment_sigma, **kwargs, ) def forward_before_blocks( self, x: torch.Tensor, timesteps: torch.Tensor, crossattn_emb: torch.Tensor, crossattn_mask: Optional[torch.Tensor] = None, fps: Optional[torch.Tensor] = None, image_size: Optional[torch.Tensor] = None, padding_mask: Optional[torch.Tensor] = None, scalar_feature: Optional[torch.Tensor] = None, data_type: Optional[DataType] = DataType.VIDEO, latent_condition: Optional[torch.Tensor] = None, latent_condition_sigma: Optional[torch.Tensor] = None, condition_video_augment_sigma: Optional[torch.Tensor] = None, **kwargs, ) -> torch.Tensor: """ Args: x: (B, C, T, H, W) tensor of spatial-temp inputs timesteps: (B, ) tensor of timesteps crossattn_emb: (B, N, D) tensor of cross-attention embeddings crossattn_mask: (B, N) tensor of cross-attention masks condition_video_augment_sigma: (B, T) tensor of sigma value for the conditional input augmentation """ del kwargs assert isinstance( data_type, DataType ), f"Expected DataType, got {type(data_type)}. We need discuss this flag later." original_shape = x.shape x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence( x, fps=fps, padding_mask=padding_mask, latent_condition=latent_condition, latent_condition_sigma=latent_condition_sigma, ) # logging affline scale information affline_scale_log_info = {} timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten()) affline_emb_B_D = timesteps_B_D affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach() if scalar_feature is not None: raise NotImplementedError("Scalar feature is not implemented yet.") if self.add_augment_sigma_embedding: if condition_video_augment_sigma is None: # Handling image case # Note: for video case, when there is not condition frames, we also set it as zero, see extend_model augment_conditional_latent_frames function assert data_type == DataType.IMAGE, "condition_video_augment_sigma is required for video data type" condition_video_augment_sigma = torch.zeros_like(timesteps.flatten()) affline_augment_sigma_emb_B_D, _ = self.augment_sigma_embedder(condition_video_augment_sigma.flatten()) affline_emb_B_D = affline_emb_B_D + affline_augment_sigma_emb_B_D affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach() affline_emb_B_D = self.affline_norm(affline_emb_B_D) if self.use_cross_attn_mask: crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool) # [B, 1, 1, length] else: crossattn_mask = None x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D") if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange( extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D" ) crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D") if crossattn_mask: crossattn_mask = rearrange(crossattn_mask, "B M -> M B") output = { "x": x, "affline_emb_B_D": affline_emb_B_D, "crossattn_emb": crossattn_emb, "crossattn_mask": crossattn_mask, "rope_emb_L_1_1_D": rope_emb_L_1_1_D, "adaln_lora_B_3D": adaln_lora_B_3D, "original_shape": original_shape, "extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, } return output