# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, List import attrs from cosmos_predict1.diffusion.training.config.base.model import DefaultModelConfig from cosmos_predict1.diffusion.training.config.text2world.registry import ( register_configs as register_configs_text2world, ) from cosmos_predict1.diffusion.training.config.video2world.registry import ( register_configs as register_configs_video2world, ) from cosmos_predict1.diffusion.training.config.video2world_action.registry import ( register_configs as register_configs_video2world_action, ) from cosmos_predict1.diffusion.training.config.video2world_instruction.registry import ( register_configs as register_configs_video2world_instruction, ) from cosmos_predict1.diffusion.training.models.model import DiffusionModel from cosmos_predict1.utils import config from cosmos_predict1.utils.config_helper import import_all_modules_from_package from cosmos_predict1.utils.lazy_config import PLACEHOLDER from cosmos_predict1.utils.lazy_config import LazyCall as L from cosmos_predict1.utils.lazy_config import LazyDict from cosmos_predict1.utils.trainer import Trainer @attrs.define(slots=False) class Config(config.Config): # default config groups that will be used unless overwritten # see config groups in registry.py defaults: List[Any] = attrs.field( factory=lambda: [ "_self_", {"data_train": None}, {"data_val": None}, {"optimizer": "fusedadamw"}, {"scheduler": "lambdalinear"}, {"callbacks": None}, {"net": None}, {"conditioner": "add_fps_image_size_padding_mask"}, {"fsdp": None}, {"ema": "power"}, {"vae": "vae1"}, {"checkpoint": "pbss"}, {"ckpt_klass": "fsdp"}, # the list is with order, we need global experiment to be the last one {"experiment": None}, ] ) model_obj: LazyDict = L(DiffusionModel)( config=PLACEHOLDER, ) def make_config(): c = Config( model=DefaultModelConfig(), optimizer=None, scheduler=None, dataloader_train=None, dataloader_val=None, ) # Specifying values through instances of attrs c.job.project = "cosmos_predict1" c.job.group = "debug" c.job.name = "delete_${now:%Y-%m-%d}_${now:%H-%M-%S}" c.trainer.type = Trainer c.trainer.max_iter = 400_000 c.trainer.logging_iter = 10 c.trainer.validation_iter = 100 c.trainer.run_validation = False c.trainer.callbacks = None c.checkpoint = None # Call this function to register config groups. register_configs_text2world() register_configs_video2world() register_configs_video2world_instruction() register_configs_video2world_action() # experiment config are defined in the experiment folder # call import_all_modules_from_package to register them import_all_modules_from_package("cosmos_predict1.diffusion.training.config.text2world", reload=True) import_all_modules_from_package("cosmos_predict1.diffusion.training.config.video2world", reload=True) import_all_modules_from_package("cosmos_predict1.diffusion.training.config.video2world_instruction", reload=True) import_all_modules_from_package("cosmos_predict1.diffusion.training.config.video2world_action", reload=True) return c