# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing. It allows us easy to switch building blocks used and their order. Its instantiation includes * transformer on fully flattened tokens * factored spatial and temporal attention * factored non-overlap spatial and temporal attention * mixing of above attention types Limitations: * In favor of simplicity and cleanness, many ops are not fused and we can do better * such as combining mutiple adaln MLPs into one inside one transformer block. * we use reshape heavily, which may be not efficient when its occurs unnecessary CUDA memory copy Purpose: * A prototype for testing different attention types and their combinations * Idealy, we want to know where we should allocate our resources / FLOPS / memory via extensive empirical studies """ from collections.abc import Container from typing import List, Optional, Tuple import torch from einops import rearrange from megatron.core import parallel_state from torch import nn from torch.distributed import ProcessGroup, get_process_group_ranks from torchvision import transforms from cosmos_predict1.diffusion.module.attention import get_normalization from cosmos_predict1.diffusion.training.conditioner import DataType from cosmos_predict1.diffusion.training.module.blocks import ( DITBuildingBlock, FinalLayer, GeneralDITTransformerBlock, PatchEmbed, SDXLTimestepEmbedding, SDXLTimesteps, ) from cosmos_predict1.diffusion.training.module.position_embedding import ( LearnableEmb3D, LearnableEmb3D_FPS_Aware, LearnablePosEmbAxis, SinCosPosEmb, SinCosPosEmb_FPS_Aware, SinCosPosEmbAxis, VideoRopePosition3DEmb, VideoRopePositionEmb, ) from cosmos_predict1.diffusion.training.tensor_parallel import gather_along_first_dim, scatter_along_first_dim from cosmos_predict1.utils import log class GeneralDIT(nn.Module): """ A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing. Attributes: max_img_h (int): Maximum height of the input images. max_img_w (int): Maximum width of the input images. max_frames (int): Maximum number of frames in the video sequence. in_channels (int): Number of input channels (e.g., RGB channels for color images). out_channels (int): Number of output channels. patch_spatial (tuple of int): Spatial resolution of patches for input processing. patch_temporal (int): Temporal resolution of patches for input processing. concat_padding_mask (bool): If True, includes a mask channel in the input to handle padding. block_config (str): Configuration of the transformer block, e.g., 'FA-CA-MLP', means full attention, cross attention, and MLP in sequence in one transformer block. model_channels (int): Base number of channels used throughout the model. num_blocks (int): Number of residual blocks per resolution in the transformer. num_heads (int): Number of heads in the multi-head self-attention layers. spatial_attn_win_size (int): Window size for the spatial attention mechanism. temporal_attn_win_size (int): Window size for the temporal attention mechanism. mlp_ratio (float): Expansion ratio for the MLP (multi-layer perceptron) blocks in the transformer. use_memory_save (bool): If True, utilizes checkpointing to reduce memory usage during training. (Deprecated) use_checkpoint (bool): If True, utilizes checkpointing to reduce memory usage during training for all blocks. crossattn_emb_channels (int): Number of embedding channels used in the cross-attention layers. use_cross_attn_mask (bool): If True, applies a mask during cross-attention operations to manage sequence alignment. pos_emb_cls (str): Type of positional embeddings used ('sincos' for sinusoidal or other types). pos_emb_learnable (bool): Specifies if positional embeddings are learnable. pos_emb_interpolation (str): Method used for interpolating positional embeddings, e.g., 'crop' for cropping adjustments. block_x_format (str, optional): The format of the input tensor for the transformer block. Defaults to "BTHWD". Only support 'BTHWD' and 'THWBD'. legacy_patch_emb (bool): If True, applies 3D convolutional layers for video inputs, otherwise, use Linear! This is for backward compatibility. rope_h_extrapolation_ratio (float): Ratio of the height extrapolation for the rope positional embedding. rope_w_extrapolation_ratio (float): Ratio of the width extrapolation for the rope positional embedding. rope_t_extrapolation_ratio (float): Ratio of the temporal extrapolation for the rope positional embedding. Note: block_config support block type: * spatial_sa, ssa: spatial self attention * temporal_sa, tsa: temporal self attention * cross_attn, ca: cross attention * full_attn: full attention on all flatten tokens * mlp, ff: feed forward block * use '-' to separate different building blocks, e.g., 'FA-CA-MLP' means full attention, cross attention, and MLP in sequence in one transformer block. Example: >>> # full attention, cross attention, and MLP >>> option1_block_config = 'FA-CA-MLP' >>> model_1 = GeneralDIT( max_img_h=64, max_img_w=64, max_frames=32, in_channels=16, out_channels=16, patch_spatial=2, patch_temporal=1, model_channels=768, num_blocks=10, num_heads=16, mlp_ratio=4.0, spatial_attn_win_size=1, temporal_attn_win_size=1, block_config=option1_block_config ) >>> option2_block_config = 'SSA-CA-MLP-TSA-CA-MLP' >>> model_2 = GeneralDIT( max_img_h=64, max_img_w=64, max_frames=32, in_channels=16, out_channels=16, patch_spatial=2, patch_temporal=1, model_channels=768, num_blocks=10, num_heads=16, mlp_ratio=4.0, spatial_attn_win_size=1, temporal_attn_win_size=1, block_config=option2_block_config ) >>> # option3 model >>> model_3 = GeneralDIT( max_img_h=64, max_img_w=64, max_frames=32, in_channels=16, out_channels=16, patch_spatial=2, patch_temporal=1, model_channels=768, num_blocks=10, num_heads=16, mlp_ratio=4.0, spatial_attn_win_size=1, temporal_attn_win_size=2, block_config=option2_block_config ) >>> # Process input tensor through the model >>> output = model(input_tensor) """ def __init__( self, max_img_h: int, max_img_w: int, max_frames: int, in_channels: int, out_channels: int, patch_spatial: tuple, patch_temporal: int, concat_padding_mask: bool = True, # attention settings block_config: str = "FA-CA-MLP", model_channels: int = 768, num_blocks: int = 10, num_heads: int = 16, window_block_indexes: list = [], # index for window attention block window_sizes: list = [], # window size for window attention block in the order of T, H, W spatial_attn_win_size: int = 1, temporal_attn_win_size: int = 1, mlp_ratio: float = 4.0, use_memory_save: bool = False, use_checkpoint: bool = False, block_x_format: str = "BTHWD", # cross attention settings crossattn_emb_channels: int = 1024, use_cross_attn_mask: bool = False, # positional embedding settings pos_emb_cls: str = "sincos", pos_emb_learnable: bool = False, pos_emb_interpolation: str = "crop", min_fps: int = 1, # 1 for getty video max_fps: int = 30, # 120 for getty video but let's use 30 additional_timestamp_channels: dict = None, # Follow SDXL, in format of {condition_name : dimension} affline_emb_norm: bool = False, # whether or not to normalize the affine embedding use_adaln_lora: bool = False, adaln_lora_dim: int = 256, layer_mask: list = None, # whether or not a layer is used. For controlnet encoder legacy_patch_emb: bool = True, rope_h_extrapolation_ratio: float = 1.0, rope_w_extrapolation_ratio: float = 1.0, rope_t_extrapolation_ratio: float = 1.0, extra_per_block_abs_pos_emb: bool = True, extra_per_block_abs_pos_emb_type: str = "learnable", extra_h_extrapolation_ratio: float = 1.0, extra_w_extrapolation_ratio: float = 1.0, extra_t_extrapolation_ratio: float = 1.0, ) -> None: super().__init__() self.max_img_h = max_img_h self.max_img_w = max_img_w self.max_frames = max_frames self.in_channels = in_channels self.out_channels = out_channels self.patch_spatial = patch_spatial self.patch_temporal = patch_temporal self.num_heads = num_heads self.num_blocks = num_blocks self.model_channels = model_channels self.use_cross_attn_mask = use_cross_attn_mask self.concat_padding_mask = concat_padding_mask # positional embedding settings self.pos_emb_cls = pos_emb_cls self.pos_emb_learnable = pos_emb_learnable self.pos_emb_interpolation = pos_emb_interpolation self.min_fps = min_fps self.max_fps = max_fps self.additional_timestamp_channels = additional_timestamp_channels self.affline_emb_norm = affline_emb_norm self.legacy_patch_emb = legacy_patch_emb self.rope_h_extrapolation_ratio = rope_h_extrapolation_ratio self.rope_w_extrapolation_ratio = rope_w_extrapolation_ratio self.rope_t_extrapolation_ratio = rope_t_extrapolation_ratio self.extra_per_block_abs_pos_emb = extra_per_block_abs_pos_emb self.extra_per_block_abs_pos_emb_type = extra_per_block_abs_pos_emb_type.lower() self.extra_h_extrapolation_ratio = extra_h_extrapolation_ratio self.extra_w_extrapolation_ratio = extra_w_extrapolation_ratio self.extra_t_extrapolation_ratio = extra_t_extrapolation_ratio self.build_patch_embed() self.build_pos_embed() self.cp_group = None self.sequence_parallel = getattr(parallel_state, "sequence_parallel", False) self.block_x_format = block_x_format self.use_adaln_lora = use_adaln_lora self.adaln_lora_dim = adaln_lora_dim self.t_embedder = nn.Sequential( SDXLTimesteps(model_channels), SDXLTimestepEmbedding(model_channels, model_channels, use_adaln_lora=use_adaln_lora), ) self.blocks = nn.ModuleDict() self.block_config = block_config self.use_memory_save = use_memory_save self.use_checkpoint = use_checkpoint assert ( len(window_block_indexes) == 0 or block_config == "FA-CA-MLP" ), "Block config must be FA-CA-MLP if using a combination of window attention and global attention" layer_mask = [False] * num_blocks if layer_mask is None else layer_mask assert ( len(layer_mask) == num_blocks ), f"Layer mask length {len(layer_mask)} does not match num_blocks {num_blocks}" for idx in range(num_blocks): if layer_mask[idx]: continue self.blocks[f"block{idx}"] = GeneralDITTransformerBlock( x_dim=model_channels, context_dim=crossattn_emb_channels, num_heads=num_heads, block_config=block_config, window_sizes=( window_sizes if idx in window_block_indexes else [] ), # There will be bug if using "WA-CA-MLP" mlp_ratio=mlp_ratio, spatial_attn_win_size=spatial_attn_win_size, temporal_attn_win_size=temporal_attn_win_size, x_format=self.block_x_format, use_adaln_lora=use_adaln_lora, adaln_lora_dim=adaln_lora_dim, use_checkpoint=use_checkpoint, ) self.build_decode_head() self.build_additional_timestamp_embedder() if self.affline_emb_norm: log.critical("Building affine embedding normalization layer") self.affline_norm = get_normalization("R", model_channels) else: self.affline_norm = nn.Identity() self.init_weights() if self.use_memory_save: log.critical("Using checkpointing to save memory! only verified in 14B base model training!") for block in self.blocks.values(): block.set_memory_save() def init_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize timestep embedding nn.init.normal_(self.t_embedder[1].linear_1.weight, std=0.02) if self.t_embedder[1].linear_1.bias is not None: nn.init.constant_(self.t_embedder[1].linear_1.bias, 0) nn.init.normal_(self.t_embedder[1].linear_2.weight, std=0.02) if self.t_embedder[1].linear_2.bias is not None: nn.init.constant_(self.t_embedder[1].linear_2.bias, 0) # Zero-out adaLN modulation layers in DiT blocks: for transformer_block in self.blocks.values(): for block in transformer_block.blocks: nn.init.constant_(block.adaLN_modulation[-1].weight, 0) if block.adaLN_modulation[-1].bias is not None: nn.init.constant_(block.adaLN_modulation[-1].bias, 0) # Tensor parallel if parallel_state.is_initialized() and parallel_state.get_tensor_model_parallel_world_size() > 1: self.initialize_tensor_parallel_weights() def initialize_tensor_parallel_weights(self): """ Initialize weights for tensor parallel layers. This function performs the following steps: 1. Retrieves the tensor parallel rank. 2. Saves the current random state. 3. Sets a new random seed based on the tensor parallel rank. 4. Initializes weights for attention and MLP layers in each block. 5. Restores the original random state. The use of different random seeds for each rank ensures unique initializations across parallel processes. """ tp_rank = parallel_state.get_tensor_model_parallel_rank() # Save the current random state rng_state = torch.get_rng_state() # Set a new random seed based on the tensor parallel rank torch.manual_seed(tp_rank) for block in self.blocks.values(): for layer in block.blocks: if layer.block_type in ["full_attn", "fa", "cross_attn", "ca"]: # Initialize weights for attention layers torch.nn.init.xavier_uniform_(layer.block.attn.to_q[0].weight) torch.nn.init.xavier_uniform_(layer.block.attn.to_k[0].weight) torch.nn.init.xavier_uniform_(layer.block.attn.to_v[0].weight) torch.nn.init.xavier_uniform_(layer.block.attn.to_out[0].weight) elif layer.block_type in ["mlp", "ff"]: # Initialize weights for MLP layers torch.nn.init.xavier_uniform_(layer.block.layer1.weight) torch.nn.init.xavier_uniform_(layer.block.layer2.weight) else: raise ValueError(f"Unknown block type {layer.block_type}") # Restore the original random state torch.set_rng_state(rng_state) def build_decode_head(self): self.final_layer = FinalLayer( hidden_size=self.model_channels, spatial_patch_size=self.patch_spatial, temporal_patch_size=self.patch_temporal, out_channels=self.out_channels, use_adaln_lora=self.use_adaln_lora, adaln_lora_dim=self.adaln_lora_dim, ) def build_patch_embed(self): ( concat_padding_mask, in_channels, patch_spatial, patch_temporal, model_channels, ) = ( self.concat_padding_mask, self.in_channels, self.patch_spatial, self.patch_temporal, self.model_channels, ) in_channels = in_channels + 1 if concat_padding_mask else in_channels self.x_embedder = PatchEmbed( spatial_patch_size=patch_spatial, temporal_patch_size=patch_temporal, in_channels=in_channels, out_channels=model_channels, bias=False, keep_spatio=True, legacy_patch_emb=self.legacy_patch_emb, ) # Initialize patch_embed like nn.Linear (instead of nn.Conv2d) if self.legacy_patch_emb: w = self.x_embedder.proj.weight.data nn.init.xavier_uniform_(w.view([w.shape[0], -1])) def build_additional_timestamp_embedder(self): if self.additional_timestamp_channels: self.additional_timestamp_embedder = nn.ModuleDict() for cond_name, cond_emb_channels in self.additional_timestamp_channels.items(): log.critical( f"Building additional timestamp embedder for {cond_name} with {cond_emb_channels} channels" ) self.additional_timestamp_embedder[cond_name] = nn.Sequential( SDXLTimesteps(cond_emb_channels), SDXLTimestepEmbedding(cond_emb_channels, cond_emb_channels), ) def prepare_additional_timestamp_embedder(self, **kwargs): condition_concat = [] for cond_name, embedder in self.additional_timestamp_embedder.items(): condition_concat.append(embedder(kwargs[cond_name])[0]) embedding = torch.cat(condition_concat, dim=1) if embedding.shape[1] < self.model_channels: embedding = nn.functional.pad(embedding, (0, self.model_channels - embedding.shape[1])) return embedding def build_pos_embed(self): if self.pos_emb_cls == "sincos": cls_type = SinCosPosEmb elif self.pos_emb_cls == "learnable": cls_type = LearnableEmb3D elif self.pos_emb_cls == "sincos_fps_aware": cls_type = SinCosPosEmb_FPS_Aware elif self.pos_emb_cls == "learnable_fps_aware": cls_type = LearnableEmb3D_FPS_Aware elif self.pos_emb_cls == "rope": cls_type = VideoRopePositionEmb elif self.pos_emb_cls == "rope3d": cls_type = VideoRopePosition3DEmb else: raise ValueError(f"Unknown pos_emb_cls {self.pos_emb_cls}") log.critical(f"Building positional embedding with {self.pos_emb_cls} class, impl {cls_type}") kwargs = dict( model_channels=self.model_channels, len_h=self.max_img_h // self.patch_spatial, len_w=self.max_img_w // self.patch_spatial, len_t=self.max_frames // self.patch_temporal, max_fps=self.max_fps, min_fps=self.min_fps, is_learnable=self.pos_emb_learnable, interpolation=self.pos_emb_interpolation, head_dim=self.model_channels // self.num_heads, h_extrapolation_ratio=self.rope_h_extrapolation_ratio, w_extrapolation_ratio=self.rope_w_extrapolation_ratio, t_extrapolation_ratio=self.rope_t_extrapolation_ratio, ) self.pos_embedder = cls_type( **kwargs, ) assert self.extra_per_block_abs_pos_emb is True, "extra_per_block_abs_pos_emb must be True" if self.extra_per_block_abs_pos_emb: assert self.extra_per_block_abs_pos_emb_type in [ "learnable", ], f"Unknown extra_per_block_abs_pos_emb_type {self.extra_per_block_abs_pos_emb_type}" kwargs["h_extrapolation_ratio"] = self.extra_h_extrapolation_ratio kwargs["w_extrapolation_ratio"] = self.extra_w_extrapolation_ratio kwargs["t_extrapolation_ratio"] = self.extra_t_extrapolation_ratio self.extra_pos_embedder = LearnablePosEmbAxis(**kwargs) def prepare_embedded_sequence( self, x_B_C_T_H_W: torch.Tensor, fps: Optional[torch.Tensor] = None, padding_mask: Optional[torch.Tensor] = None, latent_condition: Optional[torch.Tensor] = None, latent_condition_sigma: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """ Prepares an embedded sequence tensor by applying positional embeddings and handling padding masks. Args: x_B_C_T_H_W (torch.Tensor): video fps (Optional[torch.Tensor]): Frames per second tensor to be used for positional embedding when required. If None, a default value (`self.base_fps`) will be used. padding_mask (Optional[torch.Tensor]): current it is not used Returns: Tuple[torch.Tensor, Optional[torch.Tensor]]: - A tensor of shape (B, T, H, W, D) with the embedded sequence. - An optional positional embedding tensor, returned only if the positional embedding class (`self.pos_emb_cls`) includes 'rope'. Otherwise, None. Notes: - If `self.concat_padding_mask` is True, a padding mask channel is concatenated to the input tensor. - The method of applying positional embeddings depends on the value of `self.pos_emb_cls`. - If 'rope' is in `self.pos_emb_cls` (case insensitive), the positional embeddings are generated using the `self.pos_embedder` with the shape [T, H, W]. - If "fps_aware" is in `self.pos_emb_cls`, the positional embeddings are generated using the `self.pos_embedder` with the fps tensor. - Otherwise, the positional embeddings are generated without considering fps. """ if self.concat_padding_mask: padding_mask = transforms.functional.resize( padding_mask, list(x_B_C_T_H_W.shape[-2:]), interpolation=transforms.InterpolationMode.NEAREST ) x_B_C_T_H_W = torch.cat( [x_B_C_T_H_W, padding_mask.unsqueeze(1).repeat(1, 1, x_B_C_T_H_W.shape[2], 1, 1)], dim=1 ) x_B_T_H_W_D = self.x_embedder(x_B_C_T_H_W) if self.extra_per_block_abs_pos_emb: extra_pos_emb = self.extra_pos_embedder(x_B_T_H_W_D, fps=fps) else: extra_pos_emb = None if "rope" in self.pos_emb_cls.lower(): return x_B_T_H_W_D, self.pos_embedder(x_B_T_H_W_D, fps=fps), extra_pos_emb if "fps_aware" in self.pos_emb_cls: x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D, fps=fps) # [B, T, H, W, D] else: x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D) # [B, T, H, W, D] return x_B_T_H_W_D, None, extra_pos_emb def decoder_head( self, x_B_T_H_W_D: torch.Tensor, emb_B_D: torch.Tensor, crossattn_emb: torch.Tensor, origin_shape: Tuple[int, int, int, int, int], # [B, C, T, H, W] crossattn_mask: Optional[torch.Tensor] = None, adaln_lora_B_3D: Optional[torch.Tensor] = None, ) -> torch.Tensor: del crossattn_emb, crossattn_mask B, C, T_before_patchify, H_before_patchify, W_before_patchify = origin_shape x_BT_HW_D = rearrange(x_B_T_H_W_D, "B T H W D -> (B T) (H W) D") x_BT_HW_D = self.final_layer(x_BT_HW_D, emb_B_D, adaln_lora_B_3D=adaln_lora_B_3D) # This is to ensure x_BT_HW_D has the correct shape because # when we merge T, H, W into one dimension, x_BT_HW_D has shape (B * T * H * W, 1*1, D). x_BT_HW_D = x_BT_HW_D.view( B * T_before_patchify // self.patch_temporal, H_before_patchify // self.patch_spatial * W_before_patchify // self.patch_spatial, -1, ) x_B_D_T_H_W = rearrange( x_BT_HW_D, "(B T) (H W) (p1 p2 t C) -> B C (T t) (H p1) (W p2)", p1=self.patch_spatial, p2=self.patch_spatial, H=H_before_patchify // self.patch_spatial, W=W_before_patchify // self.patch_spatial, t=self.patch_temporal, B=B, ) return x_B_D_T_H_W def forward_before_blocks( self, x: torch.Tensor, timesteps: torch.Tensor, crossattn_emb: torch.Tensor, crossattn_mask: Optional[torch.Tensor] = None, fps: Optional[torch.Tensor] = None, image_size: Optional[torch.Tensor] = None, padding_mask: Optional[torch.Tensor] = None, scalar_feature: Optional[torch.Tensor] = None, data_type: Optional[DataType] = DataType.VIDEO, latent_condition: Optional[torch.Tensor] = None, latent_condition_sigma: Optional[torch.Tensor] = None, **kwargs, ) -> torch.Tensor: """ Args: x: (B, C, T, H, W) tensor of spatial-temp inputs timesteps: (B, ) tensor of timesteps crossattn_emb: (B, N, D) tensor of cross-attention embeddings crossattn_mask: (B, N) tensor of cross-attention masks """ del kwargs assert isinstance( data_type, DataType ), f"Expected DataType, got {type(data_type)}. We need discuss this flag later." original_shape = x.shape x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence( x, fps=fps, padding_mask=padding_mask, latent_condition=latent_condition, latent_condition_sigma=latent_condition_sigma, ) # logging affline scale information affline_scale_log_info = {} timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten()) affline_emb_B_D = timesteps_B_D affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach() if scalar_feature is not None: raise NotImplementedError("Scalar feature is not implemented yet.") timesteps_B_D = timesteps_B_D + scalar_feature.mean(dim=1) if self.additional_timestamp_channels: additional_cond_B_D = self.prepare_additional_timestamp_embedder( bs=x.shape[0], fps=fps, h=image_size[:, 0], w=image_size[:, 1], org_h=image_size[:, 2], org_w=image_size[:, 3], ) affline_emb_B_D += additional_cond_B_D affline_scale_log_info["additional_cond_B_D"] = additional_cond_B_D.detach() affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach() affline_emb_B_D = self.affline_norm(affline_emb_B_D) # for logging purpose self.affline_scale_log_info = affline_scale_log_info self.affline_emb = affline_emb_B_D self.crossattn_emb = crossattn_emb self.crossattn_mask = crossattn_mask if self.use_cross_attn_mask: crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool) # [B, 1, 1, length] else: crossattn_mask = None if self.blocks["block0"].x_format == "THWBD": x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D") if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange( extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D" ) crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D") if crossattn_mask: crossattn_mask = rearrange(crossattn_mask, "B M -> M B") if self.sequence_parallel: tp_group = parallel_state.get_tensor_model_parallel_group() # Sequence parallel requires the input tensor to be scattered along the first dimension. assert self.block_config == "FA-CA-MLP" # Only support this block config for now T, H, W, B, D = x.shape # variable name x_T_H_W_B_D is no longer valid. x is reshaped to THW*1*1*b*D and will be reshaped back in FinalLayer x = x.view(T * H * W, 1, 1, B, D) assert x.shape[0] % parallel_state.get_tensor_model_parallel_world_size() == 0 x = scatter_along_first_dim(x, tp_group) if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.view( T * H * W, 1, 1, B, D ) extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = scatter_along_first_dim( extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, tp_group ) elif self.blocks["block0"].x_format == "BTHWD": x = x_B_T_H_W_D else: raise ValueError(f"Unknown x_format {self.blocks[0].x_format}") output = { "x": x, "affline_emb_B_D": affline_emb_B_D, "crossattn_emb": crossattn_emb, "crossattn_mask": crossattn_mask, "rope_emb_L_1_1_D": rope_emb_L_1_1_D, "adaln_lora_B_3D": adaln_lora_B_3D, "original_shape": original_shape, "extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, } return output def forward_blocks_regular( self, x, affline_emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, adaln_lora_B_3D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, feature_indices, original_shape, x_ctrl, return_features_early, ): features = [] for name, block in self.blocks.items(): assert ( self.blocks["block0"].x_format == block.x_format ), f"First block has x_format {self.blocks[0].x_format}, got {block.x_format}" x = block( x, affline_emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D=rope_emb_L_1_1_D, adaln_lora_B_3D=adaln_lora_B_3D, extra_per_block_pos_emb=extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, ) # Extract features block_idx = int(name.split("block")[-1]) if block_idx in feature_indices: B, C, T, H, W = original_shape H = H // self.patch_spatial W = W // self.patch_spatial T = T // self.patch_temporal if self.sequence_parallel: x_feat = gather_along_first_dim(x, parallel_state.get_tensor_model_parallel_group()) x_B_T_H_W_D = rearrange(x_feat, "(T H W) 1 1 B D -> B T H W D", T=T, H=H, W=W) else: x_feat = x if self.blocks["block0"].x_format == "THWBD": x_B_T_H_W_D = rearrange(x_feat, "T H W B D -> B T H W D", T=T, H=H, W=W) elif self.blocks["block0"].x_format == "BTHWD": x_B_T_H_W_D = x_feat else: raise ValueError(f"Unknown x_format {self.blocks[-1].x_format}") features.append(x_B_T_H_W_D) if x_ctrl is not None and name in x_ctrl: x = x + x_ctrl[name] # If we have all of the features, we can exit early if return_features_early and len(features) == len(feature_indices): return features if self.blocks["block0"].x_format == "THWBD": x_B_T_H_W_D = rearrange(x, "T H W B D -> B T H W D") elif self.blocks["block0"].x_format == "BTHWD": x_B_T_H_W_D = x else: raise ValueError(f"Unknown x_format {self.blocks[-1].x_format}") x_B_D_T_H_W = self.decoder_head( x_B_T_H_W_D=x_B_T_H_W_D, emb_B_D=affline_emb_B_D, crossattn_emb=None, origin_shape=original_shape, crossattn_mask=None, adaln_lora_B_3D=adaln_lora_B_3D, ) if len(feature_indices) == 0: # no features requested, return only the model output return x_B_D_T_H_W else: # score and features; score, features return x_B_D_T_H_W, features def forward_blocks_memory_save( self, x, affline_emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, adaln_lora_B_3D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, feature_indices, original_shape, x_ctrl, return_features_early, ): x_before_gate = 0 x_skip = rearrange(x, "T H W B D -> (T H W) B D") assert self.blocks["block0"].x_format == "THWBD" if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: extra_per_block_pos_emb = rearrange(extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "T H W B D -> (T H W) B D") else: extra_per_block_pos_emb = None gate_L_B_D = 1.0 features = [] for name, block in self.blocks.items(): gate_L_B_D, x_before_gate, x_skip = block( x_before_gate, x_skip, gate_L_B_D, affline_emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D=rope_emb_L_1_1_D, adaln_lora_B_3D=adaln_lora_B_3D, extra_per_block_pos_emb=extra_per_block_pos_emb, ) # Extract features. # Convert the block index in the memory save mode to the block index in the regular mode. block_idx = int(name.split("block")[-1]) - 1 if block_idx in feature_indices: B, C, T_before_patchify, H_before_patchify, W_before_patchify = original_shape H = H_before_patchify // self.patch_spatial W = W_before_patchify // self.patch_spatial T = T_before_patchify // self.patch_temporal if self.sequence_parallel: x_feat = gather_along_first_dim(x_skip, parallel_state.get_tensor_model_parallel_group()) x_B_T_H_W_D = rearrange(x_feat, "(T H W) 1 1 B D -> B T H W D", T=T, H=H, W=W) else: x_feat = x_skip x_B_T_H_W_D = rearrange(x_feat, "(T H W) B D -> B T H W D", T=T, H=H, W=W) features.append(x_B_T_H_W_D) new_name = f"block{block_idx}" if x_ctrl is not None and new_name in x_ctrl: x_ctrl_ = x_ctrl[new_name] x_ctrl_ = rearrange(x_ctrl_, "T H W B D -> (T H W) B D") x_skip = x_skip + x_ctrl_ # If we have all of the features, we can exit early if return_features_early and len(features) == len(feature_indices): return features x_THW_B_D_before_gate = x_before_gate x_THW_B_D_skip = x_skip B, C, T_before_patchify, H_before_patchify, W_before_patchify = original_shape x_BT_HW_D_before_gate = rearrange( x_THW_B_D_before_gate, "(T H W) B D -> (B T) (H W) D", T=T_before_patchify // self.patch_temporal, H=H_before_patchify // self.patch_spatial, W=W_before_patchify // self.patch_spatial, ) x_BT_HW_D_skip = rearrange( x_THW_B_D_skip, "(T H W) B D -> (B T) (H W) D", T=T_before_patchify // self.patch_temporal, H=H_before_patchify // self.patch_spatial, W=W_before_patchify // self.patch_spatial, ) x_BT_HW_D = self.final_layer.forward_with_memory_save( x_BT_HW_D_before_gate=x_BT_HW_D_before_gate, x_BT_HW_D_skip=x_BT_HW_D_skip, gate_L_B_D=gate_L_B_D, emb_B_D=affline_emb_B_D, adaln_lora_B_3D=adaln_lora_B_3D, ) # This is to ensure x_BT_HW_D has the correct shape because # when we merge T, H, W into one dimension, x_BT_HW_D has shape (B * T * H * W, 1*1, D). x_BT_HW_D = x_BT_HW_D.view( B * T_before_patchify // self.patch_temporal, H_before_patchify // self.patch_spatial * W_before_patchify // self.patch_spatial, -1, ) x_B_D_T_H_W = rearrange( x_BT_HW_D, "(B T) (H W) (p1 p2 t C) -> B C (T t) (H p1) (W p2)", p1=self.patch_spatial, p2=self.patch_spatial, H=H_before_patchify // self.patch_spatial, W=W_before_patchify // self.patch_spatial, t=self.patch_temporal, B=B, ) if len(feature_indices) == 0: # no features requested, return only the model output return x_B_D_T_H_W else: # score and features; score, features return x_B_D_T_H_W, features def forward( self, x: torch.Tensor, timesteps: torch.Tensor, crossattn_emb: torch.Tensor, crossattn_mask: Optional[torch.Tensor] = None, fps: Optional[torch.Tensor] = None, image_size: Optional[torch.Tensor] = None, padding_mask: Optional[torch.Tensor] = None, scalar_feature: Optional[torch.Tensor] = None, data_type: Optional[DataType] = DataType.VIDEO, x_ctrl: Optional[dict] = None, latent_condition: Optional[torch.Tensor] = None, latent_condition_sigma: Optional[torch.Tensor] = None, feature_indices: Optional[Container[int]] = None, return_features_early: bool = False, condition_video_augment_sigma: Optional[torch.Tensor] = None, **kwargs, ) -> torch.Tensor | List[torch.Tensor] | Tuple[torch.Tensor, List[torch.Tensor]]: """ Args: x: (B, C, T, H, W) tensor of spatial-temp inputs timesteps: (B, ) tensor of timesteps crossattn_emb: (B, N, D) tensor of cross-attention embeddings crossattn_mask: (B, N) tensor of cross-attention masks feature_indices: A set of feature indices (a set of integers) decides which blocks to extract features from. If the set is non-empty, then features will be returned. By default, feature_indices=None means extract no features. return_features_early: If true, the forward pass returns the features once the set is complete. This means the forward pass will not finish completely and no final output is returned. condition_video_augment_sigma: (B,) used in lvg(long video generation), we add noise with this sigma to augment condition input, the lvg model will condition on the condition_video_augment_sigma value; we need forward_before_blocks pass to the forward_before_blocks function. """ if feature_indices is None: feature_indices = {} if return_features_early and len(feature_indices) == 0: # Exit immediately if user requested this. return [] inputs = self.forward_before_blocks( x=x, timesteps=timesteps, crossattn_emb=crossattn_emb, crossattn_mask=crossattn_mask, fps=fps, image_size=image_size, padding_mask=padding_mask, scalar_feature=scalar_feature, data_type=data_type, latent_condition=latent_condition, latent_condition_sigma=latent_condition_sigma, condition_video_augment_sigma=condition_video_augment_sigma, **kwargs, ) x, affline_emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, adaln_lora_B_3D, original_shape = ( inputs["x"], inputs["affline_emb_B_D"], inputs["crossattn_emb"], inputs["crossattn_mask"], inputs["rope_emb_L_1_1_D"], inputs["adaln_lora_B_3D"], inputs["original_shape"], ) extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = inputs["extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D"] if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: assert ( x.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape ), f"{x.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape} {original_shape}" if self.use_memory_save: return self.forward_blocks_memory_save( x, affline_emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, adaln_lora_B_3D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, feature_indices, original_shape, x_ctrl, return_features_early, ) return self.forward_blocks_regular( x, affline_emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, adaln_lora_B_3D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, feature_indices, original_shape, x_ctrl, return_features_early, ) @property def fsdp_wrap_block_cls(self): return DITBuildingBlock def enable_context_parallel(self, cp_group: ProcessGroup): cp_ranks = get_process_group_ranks(cp_group) cp_size = len(cp_ranks) # Set these attributes for spliting the data after embedding. self.cp_group = cp_group # Set these attributes for computing the loss. self.cp_size = cp_size self.pos_embedder.enable_context_parallel(cp_group) if self.extra_per_block_abs_pos_emb: self.extra_pos_embedder.enable_context_parallel(cp_group) # Loop through the model to set up context parallel. for block in self.blocks.values(): for layer in block.blocks: if layer.block_type in ["mlp", "ff"]: continue elif layer.block_type in ["cross_attn", "ca"]: continue else: layer.block.attn.attn_op.set_context_parallel_group(cp_group, cp_ranks, torch.cuda.Stream()) log.debug(f"[CP] Enable context parallelism with size {cp_size}") def disable_context_parallel(self): self.cp_group = None self.cp_size = None self.pos_embedder.disable_context_parallel() if self.extra_per_block_abs_pos_emb: self.extra_pos_embedder.disable_context_parallel() # Loop through the model to disable context parallel. for block in self.blocks.values(): for layer in block.blocks: if layer.block_type in ["mlp", "ff"]: continue elif layer.block_type in ["cross_attn", "ca"]: continue else: layer.block.attn.attn_op.cp_group = None layer.block.attn.attn_op.cp_ranks = None layer.block.attn.attn_op.cp_stream = None log.debug("[CP] Disable context parallelism.") def enable_sequence_parallel(self): self._set_sequence_parallel(True) def disable_sequence_parallel(self): self._set_sequence_parallel(False) def _set_sequence_parallel(self, status: bool): self.sequence_parallel = status self.final_layer.sequence_parallel = status for block in self.blocks.values(): for layer in block.blocks: if layer.block_type in ["full_attn", "fa", "cross_attn", "ca"]: layer.block.attn.to_q[0].sequence_parallel = status layer.block.attn.to_k[0].sequence_parallel = status layer.block.attn.to_v[0].sequence_parallel = status layer.block.attn.to_out[0].sequence_parallel = status layer.block.attn.attn_op.sequence_parallel = status elif layer.block_type in ["mlp", "ff"]: layer.block.layer1.sequence_parallel = status layer.block.layer2.sequence_parallel = status else: raise ValueError(f"Unknown block type {layer.block_type}") @property def is_context_parallel_enabled(self): return self.cp_group is not None