# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing. It allows us easy to switch building blocks used and their order. Its instantiation includes * transformer on fully flattened tokens * factored spatial and temporal attention * factored non-overlap spatial and temporal attention * mixing of above attention types Limitations: * In favor of simplicity and cleanness, many ops are not fused and we can do better * such as combining mutiple adaln MLPs into one inside one transformer block. * we use reshape heavily, which may be not efficient when its occurs unnecessary CUDA memory copy Purpose: * A prototype for testing different attention types and their combinations * Idealy, we want to know where we should allocate our resources / FLOPS / memory via extensive empirical studies """ from collections.abc import Container from typing import List, Optional, Tuple import torch from einops import rearrange from megatron.core import parallel_state from torch import nn from cosmos_predict1.diffusion.module.timm import Mlp from cosmos_predict1.diffusion.training.conditioner import DataType from cosmos_predict1.diffusion.training.context_parallel import split_inputs_cp from cosmos_predict1.diffusion.training.networks.general_dit import GeneralDIT from cosmos_predict1.diffusion.training.tensor_parallel import scatter_along_first_dim from cosmos_predict1.utils import log class ActionConditionalGeneralDIT(GeneralDIT): """ ActionConditionalGeneralDIT is a subclass of GeneralDIT that take `action` as condition. Action embedding is would be added to timestep embedding. """ def forward_before_blocks( self, x: torch.Tensor, timesteps: torch.Tensor, crossattn_emb: torch.Tensor, action: Optional[torch.Tensor] = None, crossattn_mask: Optional[torch.Tensor] = None, fps: Optional[torch.Tensor] = None, image_size: Optional[torch.Tensor] = None, padding_mask: Optional[torch.Tensor] = None, scalar_feature: Optional[torch.Tensor] = None, data_type: Optional[DataType] = DataType.VIDEO, latent_condition: Optional[torch.Tensor] = None, latent_condition_sigma: Optional[torch.Tensor] = None, **kwargs, ) -> torch.Tensor: """ Args: x: (B, C, T, H, W) tensor of spatial-temp inputs timesteps: (B, ) tensor of timesteps crossattn_emb: (B, N, D) tensor of cross-attention embeddings crossattn_mask: (B, N) tensor of cross-attention masks """ del kwargs assert isinstance( data_type, DataType ), f"Expected DataType, got {type(data_type)}. We need discuss this flag later." original_shape = x.shape x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence( x, fps=fps, padding_mask=padding_mask, latent_condition=latent_condition, latent_condition_sigma=latent_condition_sigma, ) # logging affline scale information affline_scale_log_info = {} timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten()) affline_emb_B_D = timesteps_B_D affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach() if scalar_feature is not None: raise NotImplementedError("Scalar feature is not implemented yet.") timesteps_B_D = timesteps_B_D + scalar_feature.mean(dim=1) if self.additional_timestamp_channels: additional_cond_B_D = self.prepare_additional_timestamp_embedder( bs=x.shape[0], fps=fps, h=image_size[:, 0], w=image_size[:, 1], org_h=image_size[:, 2], org_w=image_size[:, 3], ) affline_emb_B_D += additional_cond_B_D affline_scale_log_info["additional_cond_B_D"] = additional_cond_B_D.detach() affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach() affline_emb_B_D = self.affline_norm(affline_emb_B_D) # for logging purpose self.affline_scale_log_info = affline_scale_log_info self.affline_emb = affline_emb_B_D self.crossattn_emb = crossattn_emb self.crossattn_mask = crossattn_mask if self.use_cross_attn_mask: crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool) # [B, 1, 1, length] else: crossattn_mask = None if self.blocks["block0"].x_format == "THWBD": x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D") if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange( extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D" ) crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D") if crossattn_mask: crossattn_mask = rearrange(crossattn_mask, "B M -> M B") if self.sequence_parallel: tp_group = parallel_state.get_tensor_model_parallel_group() # Sequence parallel requires the input tensor to be scattered along the first dimension. assert self.block_config == "FA-CA-MLP" # Only support this block config for now T, H, W, B, D = x.shape # variable name x_T_H_W_B_D is no longer valid. x is reshaped to THW*1*1*b*D and will be reshaped back in FinalLayer x = x.view(T * H * W, 1, 1, B, D) assert x.shape[0] % parallel_state.get_tensor_model_parallel_world_size() == 0 x = scatter_along_first_dim(x, tp_group) if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.view( T * H * W, 1, 1, B, D ) extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = scatter_along_first_dim( extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, tp_group ) elif self.blocks["block0"].x_format == "BTHWD": x = x_B_T_H_W_D else: raise ValueError(f"Unknown x_format {self.blocks[0].x_format}") output = { "x": x, "affline_emb_B_D": affline_emb_B_D, "crossattn_emb": crossattn_emb, "crossattn_mask": crossattn_mask, "rope_emb_L_1_1_D": rope_emb_L_1_1_D, "adaln_lora_B_3D": adaln_lora_B_3D, "original_shape": original_shape, "extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, } return output def forward( self, x: torch.Tensor, timesteps: torch.Tensor, crossattn_emb: torch.Tensor, action: Optional[torch.Tensor] = None, crossattn_mask: Optional[torch.Tensor] = None, fps: Optional[torch.Tensor] = None, image_size: Optional[torch.Tensor] = None, padding_mask: Optional[torch.Tensor] = None, scalar_feature: Optional[torch.Tensor] = None, data_type: Optional[DataType] = DataType.VIDEO, x_ctrl: Optional[dict] = None, latent_condition: Optional[torch.Tensor] = None, latent_condition_sigma: Optional[torch.Tensor] = None, feature_indices: Optional[Container[int]] = None, return_features_early: bool = False, condition_video_augment_sigma: Optional[torch.Tensor] = None, **kwargs, ) -> torch.Tensor | List[torch.Tensor] | Tuple[torch.Tensor, List[torch.Tensor]]: """ Args: x: (B, C, T, H, W) tensor of spatial-temp inputs timesteps: (B, ) tensor of timesteps crossattn_emb: (B, N, D) tensor of cross-attention embeddings crossattn_mask: (B, N) tensor of cross-attention masks feature_indices: A set of feature indices (a set of integers) decides which blocks to extract features from. If the set is non-empty, then features will be returned. By default, feature_indices=None means extract no features. return_features_early: If true, the forward pass returns the features once the set is complete. This means the forward pass will not finish completely and no final output is returned. condition_video_augment_sigma: (B,) used in lvg(long video generation), we add noise with this sigma to augment condition input, the lvg model will condition on the condition_video_augment_sigma value; we need forward_before_blocks pass to the forward_before_blocks function. """ if feature_indices is None: feature_indices = {} if return_features_early and len(feature_indices) == 0: # Exit immediately if user requested this. return [] inputs = self.forward_before_blocks( x=x, timesteps=timesteps, crossattn_emb=crossattn_emb, action=action, crossattn_mask=crossattn_mask, fps=fps, image_size=image_size, padding_mask=padding_mask, scalar_feature=scalar_feature, data_type=data_type, latent_condition=latent_condition, latent_condition_sigma=latent_condition_sigma, condition_video_augment_sigma=condition_video_augment_sigma, **kwargs, ) x, affline_emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, adaln_lora_B_3D, original_shape = ( inputs["x"], inputs["affline_emb_B_D"], inputs["crossattn_emb"], inputs["crossattn_mask"], inputs["rope_emb_L_1_1_D"], inputs["adaln_lora_B_3D"], inputs["original_shape"], ) extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = inputs["extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D"] if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: assert ( x.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape ), f"{x.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape} {original_shape}" if self.use_memory_save: return self.forward_blocks_memory_save( x, affline_emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, adaln_lora_B_3D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, feature_indices, original_shape, x_ctrl, return_features_early, ) return self.forward_blocks_regular( x, affline_emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, adaln_lora_B_3D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, feature_indices, original_shape, x_ctrl, return_features_early, ) class ActionConditionalVideoExtendGeneralDIT(ActionConditionalGeneralDIT): """ ActionConditionalVideoExtendGeneralDIT is a subclass of ActionConditionalGeneralDIT that take `action` as condition. Action embedding is would be added to timestep embedding. """ def __init__(self, *args, in_channels=16 + 1, add_augment_sigma_embedding=False, **kwargs): self.add_augment_sigma_embedding = add_augment_sigma_embedding # extra channel for video condition mask super().__init__(*args, in_channels=in_channels, **kwargs) log.info(f"VideoExtendGeneralDIT in_channels: {in_channels}") assert hasattr(self, "model_channels"), "model_channels attribute is missing" self.action_embedder_B_D = Mlp( in_features=7, hidden_features=self.model_channels * 4, out_features=self.model_channels, act_layer=lambda: nn.GELU(approximate="tanh"), drop=0, ) self.action_embedder_B_3D = Mlp( in_features=7, hidden_features=self.model_channels * 4, out_features=self.model_channels * 3, act_layer=lambda: nn.GELU(approximate="tanh"), drop=0, ) def forward( self, x: torch.Tensor, timesteps: torch.Tensor, crossattn_emb: torch.Tensor, action: Optional[torch.Tensor] = None, crossattn_mask: Optional[torch.Tensor] = None, fps: Optional[torch.Tensor] = None, image_size: Optional[torch.Tensor] = None, padding_mask: Optional[torch.Tensor] = None, scalar_feature: Optional[torch.Tensor] = None, data_type: Optional[DataType] = DataType.VIDEO, video_cond_bool: Optional[torch.Tensor] = None, condition_video_indicator: Optional[torch.Tensor] = None, condition_video_input_mask: Optional[torch.Tensor] = None, condition_video_augment_sigma: Optional[torch.Tensor] = None, condition_video_pose: Optional[torch.Tensor] = None, **kwargs, ) -> torch.Tensor: """Args: condition_video_augment_sigma: (B) tensor of sigma value for the conditional input augmentation condition_video_pose: (B, 1, T, H, W) tensor of pose condition """ B, C, T, H, W = x.shape if data_type == DataType.VIDEO: assert ( condition_video_input_mask is not None ), "condition_video_input_mask is required for video data type; check if your model_obj is extend_model.FSDPDiffusionModel or the base DiffusionModel" if self.cp_group is not None: condition_video_input_mask = split_inputs_cp( condition_video_input_mask, seq_dim=2, cp_group=self.cp_group ) condition_video_indicator = split_inputs_cp( condition_video_indicator, seq_dim=2, cp_group=self.cp_group ) if condition_video_pose is not None: condition_video_pose = split_inputs_cp(condition_video_pose, seq_dim=2, cp_group=self.cp_group) # log.critical(f"hit video case, video_cond_bool: {video_cond_bool}, condition_video_indicator: {condition_video_indicator.flatten()}, condition_video_input_mask: {condition_video_input_mask.shape}, {condition_video_input_mask[:,:,:,0,0]}", rank0_only=False) input_list = [x, condition_video_input_mask] if condition_video_pose is not None: if condition_video_pose.shape[2] > T: log.warning( f"condition_video_pose has more frames than the input video: {condition_video_pose.shape} > {x.shape}" ) condition_video_pose = condition_video_pose[:, :, :T, :, :].contiguous() input_list.append(condition_video_pose) x = torch.cat( input_list, dim=1, ) if data_type == DataType.IMAGE: # For image, we dont have condition_video_input_mask, or condition_video_pose # We need to add the extra channel for video condition mask padding_channels = self.in_channels - x.shape[1] x = torch.cat([x, torch.zeros((B, padding_channels, T, H, W), dtype=x.dtype, device=x.device)], dim=1) else: assert x.shape[1] == self.in_channels, f"Expected {self.in_channels} channels, got {x.shape[1]}" return super().forward( x=x, timesteps=timesteps, crossattn_emb=crossattn_emb, action=action, crossattn_mask=crossattn_mask, fps=fps, image_size=image_size, padding_mask=padding_mask, scalar_feature=scalar_feature, data_type=data_type, condition_video_augment_sigma=condition_video_augment_sigma, **kwargs, ) def forward_before_blocks( self, x: torch.Tensor, timesteps: torch.Tensor, crossattn_emb: torch.Tensor, action: Optional[torch.Tensor] = None, crossattn_mask: Optional[torch.Tensor] = None, fps: Optional[torch.Tensor] = None, image_size: Optional[torch.Tensor] = None, padding_mask: Optional[torch.Tensor] = None, scalar_feature: Optional[torch.Tensor] = None, data_type: Optional[DataType] = DataType.VIDEO, latent_condition: Optional[torch.Tensor] = None, latent_condition_sigma: Optional[torch.Tensor] = None, condition_video_augment_sigma: Optional[torch.Tensor] = None, **kwargs, ) -> torch.Tensor: """ Args: x: (B, C, T, H, W) tensor of spatial-temp inputs timesteps: (B, ) tensor of timesteps crossattn_emb: (B, N, D) tensor of cross-attention embeddings crossattn_mask: (B, N) tensor of cross-attention masks condition_video_augment_sigma: (B, T) tensor of sigma value for the conditional input augmentation """ del kwargs assert isinstance( data_type, DataType ), f"Expected DataType, got {type(data_type)}. We need discuss this flag later." original_shape = x.shape x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence( x, fps=fps, padding_mask=padding_mask, latent_condition=latent_condition, latent_condition_sigma=latent_condition_sigma, ) # logging affline scale information affline_scale_log_info = {} timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten()) affline_emb_B_D = timesteps_B_D affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach() # Add action conditioning assert action is not None, "Action is required for action-conditional training" if action is not None: action = action[:, 0, :] # Since we are now training on 1 frame, we only need the first frame action. action_embedding_B_D = self.action_embedder_B_D(action) action_embedding_B_3D = self.action_embedder_B_3D(action) timesteps_B_D = timesteps_B_D + action_embedding_B_D adaln_lora_B_3D = adaln_lora_B_3D + action_embedding_B_3D if scalar_feature is not None: raise NotImplementedError("Scalar feature is not implemented yet.") timesteps_B_D = timesteps_B_D + scalar_feature.mean(dim=1) if self.additional_timestamp_channels: additional_cond_B_D = self.prepare_additional_timestamp_embedder( bs=x.shape[0], fps=fps, h=image_size[:, 0], w=image_size[:, 1], org_h=image_size[:, 2], org_w=image_size[:, 3], ) affline_emb_B_D += additional_cond_B_D affline_scale_log_info["additional_cond_B_D"] = additional_cond_B_D.detach() if self.add_augment_sigma_embedding: if condition_video_augment_sigma is None: # Handling image case # Note: for video case, when there is not condition frames, we also set it as zero, see extend_model augment_conditional_latent_frames function assert data_type == DataType.IMAGE, "condition_video_augment_sigma is required for video data type" condition_video_augment_sigma = torch.zeros_like(timesteps.flatten()) affline_augment_sigma_emb_B_D, adaln_lora_sigma_emb_B_3D = self.augment_sigma_embedder( condition_video_augment_sigma.flatten() ) affline_emb_B_D = affline_emb_B_D + affline_augment_sigma_emb_B_D affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach() affline_emb_B_D = self.affline_norm(affline_emb_B_D) # for logging purpose self.affline_scale_log_info = affline_scale_log_info self.affline_emb = affline_emb_B_D self.crossattn_emb = crossattn_emb self.crossattn_mask = crossattn_mask if self.use_cross_attn_mask: crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool) # [B, 1, 1, length] else: crossattn_mask = None if self.blocks["block0"].x_format == "THWBD": x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D") if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange( extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D" ) crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D") if crossattn_mask: crossattn_mask = rearrange(crossattn_mask, "B M -> M B") if self.sequence_parallel: tp_group = parallel_state.get_tensor_model_parallel_group() # Sequence parallel requires the input tensor to be scattered along the first dimension. assert self.block_config == "FA-CA-MLP" # Only support this block config for now T, H, W, B, D = x.shape # variable name x_T_H_W_B_D is no longer valid. x is reshaped to THW*1*1*b*D and will be reshaped back in FinalLayer x = x.view(T * H * W, 1, 1, B, D) assert x.shape[0] % parallel_state.get_tensor_model_parallel_world_size() == 0 x = scatter_along_first_dim(x, tp_group) if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.view( T * H * W, 1, 1, B, D ) extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = scatter_along_first_dim( extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, tp_group ) elif self.blocks["block0"].x_format == "BTHWD": x = x_B_T_H_W_D else: raise ValueError(f"Unknown x_format {self.blocks[0].x_format}") output = { "x": x, "affline_emb_B_D": affline_emb_B_D, "crossattn_emb": crossattn_emb, "crossattn_mask": crossattn_mask, "rope_emb_L_1_1_D": rope_emb_L_1_1_D, "adaln_lora_B_3D": adaln_lora_B_3D, "original_shape": original_shape, "extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, } return output