# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch import torch.distributed as dist from torch.autograd import Function class AllGather(Function): @staticmethod def forward(ctx, tensor, process_group): world_size = dist.get_world_size(process_group) ctx.world_size = world_size ctx.rank = process_group.rank() gathered_tensors = [torch.zeros_like(tensor) for _ in range(world_size)] dist.all_gather(gathered_tensors, tensor.contiguous(), process_group) return torch.cat(gathered_tensors, dim=0) @staticmethod def backward(ctx, grad_output): world_size = ctx.world_size rank = ctx.rank # Split the gradient tensor grad_chunks = grad_output.chunk(world_size) # Select the gradient chunk for the current rank grad_input = grad_chunks[rank] return grad_input, None def gather_along_first_dim(tensor, process_group): return AllGather.apply(tensor, process_group) class Scatter(Function): @staticmethod def forward(ctx, tensor, process_group): world_size = dist.get_world_size(process_group) ctx.world_size = world_size ctx.process_group = process_group rank = process_group.rank() # Split the tensor tensor_chunks = tensor.chunk(world_size) # Select the tensor chunk for the current rank return tensor_chunks[rank] @staticmethod def backward(ctx, grad_output): world_size = ctx.world_size process_group = ctx.process_group # Gather the gradient tensor gathered_grads = [torch.zeros_like(grad_output) for _ in range(world_size)] dist.all_gather(gathered_grads, grad_output.contiguous(), process_group) return torch.cat(gathered_grads, dim=0), None def scatter_along_first_dim(tensor, process_group): return Scatter.apply(tensor, process_group) if __name__ == "__main__": # Torch global setup for distributed training local_rank = int(os.environ["LOCAL_RANK"]) rank = int(os.environ["RANK"]) world_size = int(os.environ["WORLD_SIZE"]) torch.cuda.set_device(local_rank) torch.distributed.init_process_group(world_size=world_size, rank=rank) # Create a tensor with gradients x = torch.randn(10, 1, requires_grad=True, device="cuda") # Perform all_gather with gradient support y = gather_along_first_dim(x, dist.group.WORLD) print(f"{y.shape=}") y = scatter_along_first_dim(y, dist.group.WORLD) print(f"{y.shape=}") # Use the result in your computation loss = y.sum() loss.backward() # x.grad now contains the gradients print(x.grad)