# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The distribution modes to use for continuous image tokenizers.""" import torch class IdentityDistribution(torch.nn.Module): def __init__(self): super().__init__() def forward(self, parameters): return parameters, (torch.tensor([0.0]), torch.tensor([0.0])) class GaussianDistribution(torch.nn.Module): def __init__(self, min_logvar: float = -30.0, max_logvar: float = 20.0): super().__init__() self.min_logvar = min_logvar self.max_logvar = max_logvar def sample(self, mean, logvar): std = torch.exp(0.5 * logvar) return mean + std * torch.randn_like(mean) def forward(self, parameters): mean, logvar = torch.chunk(parameters, 2, dim=1) logvar = torch.clamp(logvar, self.min_logvar, self.max_logvar) return self.sample(mean, logvar), (mean, logvar)