# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The model definition for Continuous 2D layers Adapted from: https://github.com/CompVis/stable-diffusion/blob/ 21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/ldm/modules/diffusionmodules/model.py [Copyright (c) 2022 Robin Rombach and Patrick Esser and contributors] https://github.com/CompVis/stable-diffusion/blob/ 21f890f9da3cfbeaba8e2ac3c425ee9e998d5229/LICENSE """ import math import numpy as np # pytorch_diffusion + derived encoder decoder import torch import torch.nn as nn import torch.nn.functional as F from loguru import logger as logging from cosmos_predict1.tokenizer.modules.patching import Patcher, UnPatcher from cosmos_predict1.tokenizer.modules.utils import Normalize, nonlinearity class Upsample(nn.Module): def __init__(self, in_channels: int): super().__init__() self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x: torch.Tensor) -> torch.Tensor: x = x.repeat_interleave(2, dim=2).repeat_interleave(2, dim=3) return self.conv(x) class Downsample(nn.Module): def __init__(self, in_channels: int): super().__init__() self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) def forward(self, x: torch.Tensor) -> torch.Tensor: pad = (0, 1, 0, 1) x = F.pad(x, pad, mode="constant", value=0) return self.conv(x) class ResnetBlock(nn.Module): def __init__( self, *, in_channels: int, out_channels: int = None, dropout: float, **kwargs, ): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.norm1 = Normalize(in_channels) self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) self.norm2 = Normalize(out_channels) self.dropout = nn.Dropout(dropout) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) self.nin_shortcut = ( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) if in_channels != out_channels else nn.Identity() ) def forward(self, x: torch.Tensor) -> torch.Tensor: h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) x = self.nin_shortcut(x) return x + h class AttnBlock(nn.Module): def __init__(self, in_channels: int): super().__init__() self.norm = Normalize(in_channels) self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x: torch.Tensor) -> torch.Tensor: h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, h, w = q.shape q = q.reshape(b, c, h * w) q = q.permute(0, 2, 1) k = k.reshape(b, c, h * w) w_ = torch.bmm(q, k) w_ = w_ * (int(c) ** (-0.5)) w_ = F.softmax(w_, dim=2) # attend to values v = v.reshape(b, c, h * w) w_ = w_.permute(0, 2, 1) h_ = torch.bmm(v, w_) h_ = h_.reshape(b, c, h, w) h_ = self.proj_out(h_) return x + h_ class Encoder(nn.Module): def __init__( self, in_channels: int, channels: int, channels_mult: list[int], num_res_blocks: int, attn_resolutions: list[int], dropout: float, resolution: int, z_channels: int, spatial_compression: int, **ignore_kwargs, ): super().__init__() self.num_resolutions = len(channels_mult) self.num_res_blocks = num_res_blocks # Patcher. patch_size = ignore_kwargs.get("patch_size", 1) self.patcher = Patcher(patch_size, ignore_kwargs.get("patch_method", "rearrange")) in_channels = in_channels * patch_size * patch_size # calculate the number of downsample operations self.num_downsamples = int(math.log2(spatial_compression)) - int(math.log2(patch_size)) assert ( self.num_downsamples <= self.num_resolutions ), f"we can only downsample {self.num_resolutions} times at most" # downsampling self.conv_in = torch.nn.Conv2d(in_channels, channels, kernel_size=3, stride=1, padding=1) curr_res = resolution // patch_size in_ch_mult = (1,) + tuple(channels_mult) self.in_ch_mult = in_ch_mult self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = channels * in_ch_mult[i_level] block_out = channels * channels_mult[i_level] for _ in range(self.num_res_blocks): block.append( ResnetBlock( in_channels=block_in, out_channels=block_out, dropout=dropout, ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(AttnBlock(block_in)) down = nn.Module() down.block = block down.attn = attn if i_level < self.num_downsamples: down.downsample = Downsample(block_in) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) self.mid.attn_1 = AttnBlock(block_in) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, z_channels, kernel_size=3, stride=1, padding=1) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.patcher(x) # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1]) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level < self.num_downsamples: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h) h = self.mid.attn_1(h) h = self.mid.block_2(h) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class Decoder(nn.Module): def __init__( self, out_channels: int, channels: int, channels_mult: list[int], num_res_blocks: int, attn_resolutions: int, dropout: float, resolution: int, z_channels: int, spatial_compression: int, **ignore_kwargs, ): super().__init__() self.num_resolutions = len(channels_mult) self.num_res_blocks = num_res_blocks # UnPatcher. patch_size = ignore_kwargs.get("patch_size", 1) self.unpatcher = UnPatcher(patch_size, ignore_kwargs.get("patch_method", "rearrange")) out_ch = out_channels * patch_size * patch_size # calculate the number of upsample operations self.num_upsamples = int(math.log2(spatial_compression)) - int(math.log2(patch_size)) assert self.num_upsamples <= self.num_resolutions, f"we can only upsample {self.num_resolutions} times at most" block_in = channels * channels_mult[self.num_resolutions - 1] curr_res = (resolution // patch_size) // 2 ** (self.num_resolutions - 1) self.z_shape = (1, z_channels, curr_res, curr_res) logging.info("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape))) # z to block_in self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) self.mid.attn_1 = AttnBlock(block_in) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dropout=dropout) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = channels * channels_mult[i_level] for _ in range(self.num_res_blocks + 1): block.append( ResnetBlock( in_channels=block_in, out_channels=block_out, dropout=dropout, ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(AttnBlock(block_in)) up = nn.Module() up.block = block up.attn = attn if i_level >= (self.num_resolutions - self.num_upsamples): up.upsample = Upsample(block_in) curr_res = curr_res * 2 self.up.insert(0, up) # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, z: torch.Tensor) -> torch.Tensor: h = self.conv_in(z) # middle h = self.mid.block_1(h) h = self.mid.attn_1(h) h = self.mid.block_2(h) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = self.up[i_level].block[i_block](h) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) if i_level >= (self.num_resolutions - self.num_upsamples): h = self.up[i_level].upsample(h) h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) h = self.unpatcher(h) return h