# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import os import threading import torch from torch._dynamo.eval_frame import OptimizedModule as torch_OptimizedModule from cosmos_predict1.utils import callback, distributed, ema, log, misc from cosmos_predict1.utils.checkpointer import Checkpointer from cosmos_predict1.utils.config import CheckpointConfig, JobConfig from cosmos_predict1.utils.model import Model class TokenizerCheckpointer(Checkpointer): """The tokenizer checkpointer, extends the shared checkpointer. Supports checkpoint saving/loading to local disk: - network weights and training optimizer states. - optionally, export a TorchScript version of the EMA model. """ def __init__(self, config_checkpoint: CheckpointConfig, config_job: JobConfig, callbacks: callback.CallBackGroup): super().__init__(config_checkpoint, config_job, callbacks) self.callbacks = callbacks self.config_jit = config_checkpoint.jit def save( self, model: Model, optimizer: torch.optim.Optimizer, scheduler: torch.optim.lr_scheduler.LRScheduler, grad_scaler: torch.amp.GradScaler, iteration: int = -1, **ignore_kwargs, ) -> None: """Saves network weights, optimizer parameters, scheduler parameters to a checkpoint. Args: model (Model): The PyTorch model. optimizer: The model optimizer. scheduler: The optimization scheduler. grad_scaler: The gradient scaler (for mixed precision training). iteration: Current iteration number. """ self.callbacks.on_save_checkpoint_start(model, iteration) model.eval() checkpoint_file = f"iter_{iteration:09}.pt" if distributed.get_rank() == 0: state_dict = dict( model=model.state_dict(), optimizer=optimizer.state_dict(), scheduler=scheduler.state_dict(), grad_scaler=grad_scaler.state_dict(), iteration=iteration, ) state_dict = misc.to(state_dict, device="cpu") self.callbacks.on_save_checkpoint(model, state_dict=state_dict) # Wait for previous saver thread to end. if self.save_thread: self.save_thread.join() # Run the checkpoint saver in a separate thread. self.save_thread = threading.Thread( target=self._save_worker_local, daemon=False, args=(state_dict, self._get_ema_jit(model), checkpoint_file, distributed.get_rank()), ) self.save_thread.start() # Note: Checkpoints are saved on a separate thread and this callback is not accurate. # Please check logs from on_save_checkpoint_success() for better accuracy self.callbacks.on_save_checkpoint_end(model=None, iteration=iteration) @misc.timer("checkpoint saving (local)") def _save_worker_local( self, state_dict: dict[str, torch.Tensor], jit_models: dict[str, torch.ScriptModule], checkpoint_file: str, rank: int = 0, ) -> None: """Worker to save checkpoint to local disk, spawned with a child thread (runs in parallel with the training). Args: state_dict: The state dict of the model/optimizer/scheduler. ema_jit: A dict of TorchScript EMA model, representing the encoder, decoder and full model. checkpoint_file (str): The file name of the model checkpoint. rank (int): GPU device (default: 0). """ checkpoint_path = os.path.join(self.checkpoint_dir_local, checkpoint_file) os.makedirs(self.checkpoint_dir_local, exist_ok=True) try: torch.save(state_dict, checkpoint_path) for key, jit_model in jit_models.items(): checkpoint_jit = checkpoint_path.replace(".pt", f"_{key}.jit") torch.jit.save(jit_model, checkpoint_jit) log.success(f"Saved checkpoint: {checkpoint_jit}") if rank == 0: self._write_latest_checkpoint_file(checkpoint_file) log.success(f"Saved checkpoint (local): {checkpoint_path}") iteration = int(checkpoint_file.replace("iter_", "").replace(".pt", "")) self.callbacks.on_save_checkpoint_success(iteration=iteration) except Exception as e: # noqa: BLE001 log.exception(f"Checkpoint failed to save (local): {e}") def _get_ema_jit(self, model: Model) -> dict[str, torch.ScriptModule]: """Returns a TorchScript version of ema models compiled by PyTorch JIT.""" if not self.config_jit.enabled: return dict() input_shape = tuple(self.config_jit.input_shape) example_input = torch.randn(input_shape) dtype = getattr(torch, self.config_jit.dtype) example_input = example_input.to(self.config_jit.device).to(dtype) with ema.ema_scope(model, enabled=model.config.ema.enabled): _model = model.network if isinstance(_model, torch_OptimizedModule): _model = _model._orig_mod # Make sure jit model output consistenly during consecutive calls # Check here: https://github.com/pytorch/pytorch/issues/74534 torch._C._jit_set_texpr_fuser_enabled(False) ema_jit = torch.jit.trace(_model, example_input, strict=self.config_jit.strict) encoder_jit = torch.jit.trace(_model.encoder_jit(), example_input, strict=self.config_jit.strict) decoder_example = encoder_jit(example_input) if isinstance(decoder_example, tuple): decoder_example = decoder_example[0] else: assert isinstance(decoder_example, torch.Tensor), "decoder_example should be a tensor or tuple" decoder_jit = torch.jit.trace(_model.decoder_jit(), decoder_example, strict=self.config_jit.strict) return {"ema": ema_jit, "enc": encoder_jit, "dec": decoder_jit}