# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """registry for commandline override options for config.""" from hydra.core.config_store import ConfigStore from cosmos_predict1.tokenizer.training.configs.base.callback import BASIC_CALLBACKS from cosmos_predict1.tokenizer.training.configs.base.checkpoint import CHECKPOINT_LOCAL from cosmos_predict1.tokenizer.training.configs.base.data import DATALOADER_OPTIONS from cosmos_predict1.tokenizer.training.configs.base.loss import VideoLossConfig from cosmos_predict1.tokenizer.training.configs.base.metric import DiscreteTokenizerMetricConfig, MetricConfig from cosmos_predict1.tokenizer.training.configs.base.net import ( CausalContinuousFactorizedVideoTokenizerConfig, CausalDiscreteFactorizedVideoTokenizerConfig, ContinuousImageTokenizerConfig, DiscreteImageTokenizerConfig, ) from cosmos_predict1.tokenizer.training.configs.base.optim import ( AdamWConfig, FusedAdamConfig, WarmupCosineLRConfig, WarmupLRConfig, ) def register_training_data(cs): for data_source in ["mock", "hdvila"]: for resolution in ["1080", "720", "480", "360", "256"]: cs.store( group="data_train", package="dataloader_train", name=f"{data_source}_video{resolution}", # `davis_video720` node=DATALOADER_OPTIONS["video_loader_basic"]( dataset_name=f"{data_source}_video", is_train=True, resolution=resolution, ), ) def register_val_data(cs): for data_source in ["mock", "hdvila"]: for resolution in ["1080", "720", "480", "360", "256"]: cs.store( group="data_val", package="dataloader_val", name=f"{data_source}_video{resolution}", # `davis_video720` node=DATALOADER_OPTIONS["video_loader_basic"]( dataset_name=f"{data_source}_video", is_train=False, resolution=resolution, ), ) def register_net(cs): cs.store( group="network", package="model.config.network", name="continuous_image", node=ContinuousImageTokenizerConfig ) cs.store(group="network", package="model.config.network", name="discrete_image", node=DiscreteImageTokenizerConfig) cs.store( group="network", package="model.config.network", name="continuous_factorized_video", node=CausalContinuousFactorizedVideoTokenizerConfig, ) cs.store( group="network", package="model.config.network", name="discrete_factorized_video", node=CausalDiscreteFactorizedVideoTokenizerConfig, ) def register_optim(cs): cs.store(group="optimizer", package="optimizer", name="fused_adam", node=FusedAdamConfig) cs.store(group="optimizer", package="optimizer", name="adamw", node=AdamWConfig) def register_scheduler(cs): cs.store(group="scheduler", package="scheduler", name="warmup", node=WarmupLRConfig) cs.store( group="scheduler", package="scheduler", name="warmup_cosine", node=WarmupCosineLRConfig, ) def register_loss(cs): cs.store(group="loss", package="model.config.loss", name="video", node=VideoLossConfig) def register_metric(cs): cs.store(group="metric", package="model.config.metric", name="reconstruction", node=MetricConfig) cs.store(group="metric", package="model.config.metric", name="code_usage", node=DiscreteTokenizerMetricConfig) def register_checkpoint(cs): cs.store(group="checkpoint", package="checkpoint", name="local", node=CHECKPOINT_LOCAL) def register_callback(cs): cs.store(group="callbacks", package="trainer.callbacks", name="basic", node=BASIC_CALLBACKS) def register_configs(): cs = ConfigStore.instance() register_training_data(cs) register_val_data(cs) register_net(cs) register_optim(cs) register_scheduler(cs) register_loss(cs) register_metric(cs) register_checkpoint(cs) register_callback(cs)