# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Run this command to interactively debug: PYTHONPATH=. python cosmos_predict1/tokenizer/training/datasets/video_dataset.py Adapted from: https://github.com/bytedance/IRASim/blob/main/dataset/dataset_3D.py """ import traceback import warnings from concurrent.futures import ThreadPoolExecutor, as_completed from glob import glob import numpy as np import torch from decord import VideoReader, cpu from torch.utils.data import Dataset from torchvision import transforms as T from tqdm import tqdm from cosmos_predict1.diffusion.training.datasets.dataset_utils import ToTensorVideo class Dataset(Dataset): def __init__( self, video_pattern, sequence_interval=1, start_frame_interval=1, num_video_frames=25, ): """Dataset class for loading image-text-to-video generation data. Args: video_pattern (str): path/to/videos/*.mp4 sequence_interval (int): Interval between sampled frames in a sequence num_frames (int): Number of frames to load per sequence video_size (list): Target size [H,W] for video frames Returns dict with: - video: RGB frames tensor [T,C,H,W] - video_name: Dict with episode/frame metadata """ super().__init__() self.video_directory_or_pattern = video_pattern self.start_frame_interval = start_frame_interval self.sequence_interval = sequence_interval self.sequence_length = num_video_frames self.video_paths = sorted(glob(str(video_pattern))) print(f"{len(self.video_paths)} videos in total") self.samples = self._init_samples(self.video_paths) self.samples = sorted(self.samples, key=lambda x: (x["video_path"], x["frame_ids"][0])) print(f"{len(self.samples)} samples in total") self.wrong_number = 0 self.preprocess = T.Compose( [ ToTensorVideo(), ] ) def __str__(self): return f"{len(self.video_paths)} samples from {self.video_directory_or_pattern}" def _init_samples(self, video_paths): samples = [] with ThreadPoolExecutor(32) as executor: future_to_video_path = { executor.submit(self._load_and_process_video_path, video_path): video_path for video_path in video_paths } for future in tqdm(as_completed(future_to_video_path), total=len(video_paths)): samples.extend(future.result()) return samples def _load_and_process_video_path(self, video_path): vr = VideoReader(video_path, ctx=cpu(0), num_threads=2) n_frames = len(vr) samples = [] for frame_i in range(0, n_frames, self.start_frame_interval): sample = dict() sample["video_path"] = video_path sample["frame_ids"] = [] curr_frame_i = frame_i while True: if curr_frame_i > (n_frames - 1): break sample["frame_ids"].append(curr_frame_i) if len(sample["frame_ids"]) == self.sequence_length: break curr_frame_i += self.sequence_interval # make sure there are sequence_length number of frames if len(sample["frame_ids"]) == self.sequence_length: samples.append(sample) return samples def __len__(self): return len(self.samples) def _load_video(self, video_path, frame_ids): vr = VideoReader(video_path, ctx=cpu(0), num_threads=2) assert (np.array(frame_ids) < len(vr)).all() assert (np.array(frame_ids) >= 0).all() vr.seek(0) frame_data = vr.get_batch(frame_ids).asnumpy() return frame_data def _get_frames(self, video_path, frame_ids): frames = self._load_video(video_path, frame_ids) frames = frames.astype(np.uint8) frames = torch.from_numpy(frames).permute(0, 3, 1, 2) # (l, c, h, data) frames = self.preprocess(frames) frames = torch.clamp(frames * 255.0, 0, 255).to(torch.uint8) return frames def __getitem__(self, index): try: sample = self.samples[index] video_path = sample["video_path"] frame_ids = sample["frame_ids"] data = dict() video = self._get_frames(video_path, frame_ids) video = video.permute(1, 0, 2, 3) # Rearrange from [T, C, H, W] to [C, T, H, W] data["video"] = video data["video_name"] = { "video_path": video_path, "start_frame_id": str(frame_ids[0]), } data["fps"] = 24 data["image_size"] = torch.tensor([704, 1280, 704, 1280]) # .cuda() # TODO: Does this matter? data["num_frames"] = self.sequence_length data["padding_mask"] = torch.zeros(1, 704, 1280) # .cuda() return data except Exception: warnings.warn( f"Invalid data encountered: {self.samples[index]['video_path']}. Skipped " f"(by randomly sampling another sample in the same dataset)." ) warnings.warn("FULL TRACEBACK:") warnings.warn(traceback.format_exc()) self.wrong_number += 1 print(self.wrong_number) return self[np.random.randint(len(self.samples))] if __name__ == "__main__": dataset = Dataset( video_directory_or_pattern="assets/example_training_data/videos/*.mp4", sequence_interval=1, num_frames=57, video_size=[240, 360], ) indices = [0, 13, 200, -1] for idx in indices: data = dataset[idx] print((f"{idx=} " f"{data['video'].sum()=}\n" f"{data['video'].shape=}\n" f"{data['video_name']=}\n" "---"))