# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A CLI to export an pre-trained tokenizer checkpoint into a torch.ScriptModule. Usage: python3 -m cosmos_predict1.tokenizer.training.jit_cli \ --ckpt_path=checkpoints/Cosmos-0.1-Tokenizer-CV4x8x8/iter_001000000.pt \ --output_dir=checkpoints/Cosmos-0.1-Tokenizer-CV4x8x8/exported \ --strict_resume \ --config=cosmos_predict1/tokenizer/training/configs/config.py -- \ experiment=CV720_Causal_AE49_4x8x8_cosmos will output: /iter_001000000_ema.jit /iter_001000000_enc.jit /iter_001000000_dec.jit if --reg is specified, it will export the regular model: /iter_001000000_reg.jit /iter_001000000_enc.jit /iter_001000000_dec.jit """ import argparse import importlib import os import torch from loguru import logger as logging from torch._dynamo.eval_frame import OptimizedModule as torch_OptimizedModule from cosmos_predict1.tokenizer.training.checkpointer import TokenizerCheckpointer from cosmos_predict1.utils import callback, ema from cosmos_predict1.utils.config import Config from cosmos_predict1.utils.config_helper import get_config_module, override from cosmos_predict1.utils.lazy_config import instantiate from cosmos_predict1.utils.model import Model parser = argparse.ArgumentParser(description="Export a pre-trained model into a torch.jit.ScriptModule.") parser.add_argument( "--config", type=str, default="cosmos_predict1/tokenizer/training/configs/config.py", help="Path to the config file" ) parser.add_argument("--ckpt_path", type=str, default=None, help="The full ckpt path.") parser.add_argument("--credentials", type=str, default="credentials/pdx_vfm_base.secret", help="The credentials file.") parser.add_argument("--strict_resume", action="store_true", help="Enable strictly loading into every network weight.") parser.add_argument("--reg", action="store_true", help="Enable regular model export.") parser.add_argument("--output_dir", type=str, default=None, help="Optional output directory.") parser.add_argument( "opts", help=""" Modify config options at the end of the command. For Yacs configs, use space-separated "PATH.KEY VALUE" pairs. For python-based LazyConfig, use "path.key=value". """.strip(), default=None, nargs=argparse.REMAINDER, ) logging.info("Initialize args, cfg from command line arguments ...") args = parser.parse_args() config_module = get_config_module(args.config) config: Config = importlib.import_module(config_module).make_config() config = override(config, args.opts) def _compile_jit_models(model: Model) -> dict[str, torch.ScriptModule]: """Returns a TorchScript version of REG or EMA models compiled by PyTorch JIT.""" assert hasattr(config, "checkpoint") and hasattr(config.checkpoint, "jit") config_jit = config.checkpoint.jit input_shape = tuple(config_jit.input_shape) example_input = torch.randn(input_shape) dtype = getattr(torch, config_jit.dtype) example_input = example_input.to(config_jit.device).to(dtype) # Make sure jit model output consistenly during consecutive calls # Check here: https://github.com/pytorch/pytorch/issues/74534 torch._C._jit_set_texpr_fuser_enabled(False) with ema.ema_scope(model, enabled=model.config.ema.enabled and not args.reg): _model = model.network.eval() if isinstance(_model, torch_OptimizedModule): _model = _model._orig_mod model_jit = torch.jit.trace(_model, example_input, strict=config_jit.strict) encoder_jit = torch.jit.trace(_model.encoder_jit(), example_input, strict=config_jit.strict) decoder_example = encoder_jit(example_input)[0] decoder_jit = torch.jit.trace(_model.decoder_jit(), decoder_example, strict=config_jit.strict) if args.reg: return {"reg": model_jit, "enc": encoder_jit, "dec": decoder_jit} return {"ema": model_jit, "enc": encoder_jit, "dec": decoder_jit} def _run_export() -> None: """Exports a torch.nn.Module into a torch.jit.ScriptModule.""" # Check that the config is valid. config.validate() config.checkpoint.load_path = args.ckpt_path config.checkpoint.strict_resume = args.strict_resume config.checkpoint.load_training_state = False config.job.name = os.path.basename(args.output_dir) if args.output_dir else os.path.basename(args.ckpt_path) # Freeze the config. config.freeze() # type: ignore callbacks = callback.CallBackGroup(config=config, trainer=None) checkpointer = TokenizerCheckpointer(config.checkpoint, config.job, callbacks=callbacks) # Create the model. logging.info(f"Instantiate model={config.model.config.network.name} ...") model = instantiate(config.model) model = model.to("cuda", memory_format=config.trainer.memory_format) # type: ignore model.on_train_start(config.trainer.memory_format) logging.info(f"loading weights from {config.checkpoint.load_path}...") _ = checkpointer.load(model) model.eval() ckpt_name = config.checkpoint.load_path.split("/")[-1][:-3] # Drive the output directory. tmp_output_dir = os.path.dirname(config.checkpoint.load_path) output_dir = args.output_dir or tmp_output_dir os.makedirs(output_dir, exist_ok=True) logging.info("Performing JIT compilation ...") jit_models = _compile_jit_models(model) for name, jit_model in jit_models.items(): logging.info(f"Outputing torch.jit: {output_dir}/{ckpt_name}_{name}.jit") torch.jit.save(jit_model, f"{output_dir}/{ckpt_name}_{name}.jit") @logging.catch(reraise=True) def main() -> None: _run_export() if __name__ == "__main__": main()