# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.utils.data from cosmos_predict1.tokenizer.training.checkpointer import TokenizerCheckpointer from cosmos_predict1.utils import ema, misc from cosmos_predict1.utils.model import Model from cosmos_predict1.utils.trainer import Trainer class TokenizerTrainer(Trainer): """The tokenizers traine, extended from Trainer. It extends model training functionality. Attributes: checkpointer (Checkpointer): checkpointer object to save/load model weights and optimizer states. training_timer (misc.Timer): Timer object to time code blocks and functions. """ def __init__(self, config): super(TokenizerTrainer, self).__init__(config) self.model_config = config.model.config self.checkpointer = TokenizerCheckpointer(config.checkpoint, config.job, callbacks=self.callbacks) @torch.no_grad() def validate(self, model: Model, dataloader_val: torch.utils.data.DataLoader, iteration: int = 0) -> None: """Validate on the full validation dataset. Args: model (Model): The PyTorch model. dataloader_val (torch.utils.data.DataLoader): The validation data loader. iteration (int): Current iteration number. """ self.callbacks.on_validation_start(model, dataloader_val, iteration=iteration) model.eval() # Evaluate on the full validation set. for val_iter, data_batch in enumerate(dataloader_val): if self.config.trainer.max_val_iter is not None and val_iter >= self.config.trainer.max_val_iter: break data_batch = misc.to(data_batch, device="cuda") self.callbacks.on_validation_step_start(model, data_batch, iteration=iteration) output_batch, _ = model.validation_step(data_batch, iteration) with ema.ema_scope(model, enabled=model.config.ema.enabled): ema_output_batch, loss = model.validation_step(data_batch, iteration, ema_model=True) output_batch.update(ema_output_batch) self.callbacks.on_validation_step_end(model, data_batch, output_batch, loss, iteration=iteration) self.callbacks.on_validation_end(model, iteration=iteration)