# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import os import threading from typing import TYPE_CHECKING import torch from cosmos_predict1.utils import callback, distributed, log, misc from cosmos_predict1.utils.model import Model if TYPE_CHECKING: from cosmos_predict1.utils.config import CheckpointConfig, JobConfig class Checkpointer: """The checkpointer class. Supports checkpoint saving/loading to local disk.""" def __init__(self, config_checkpoint: CheckpointConfig, config_job: JobConfig, callbacks: callback.CallBackGroup): """Constructor of the checkpointer. Args: config_checkpoint (CheckpointConfig): The config object for the checkpointer. """ # Set the callback functions. self.callbacks = callbacks self.checkpoint_dir_local = f"{config_job.path_local}/checkpoints" self.strict_resume = config_checkpoint.strict_resume self.load_path = config_checkpoint.load_path or None self.load_training_state = config_checkpoint.load_training_state self.only_load_scheduler_state = config_checkpoint.only_load_scheduler_state self.save_thread = None def save( self, model: Model, optimizer: torch.optim.Optimizer, scheduler: torch.optim.lr_scheduler.LRScheduler, grad_scaler: torch.amp.GradScaler, iteration: int, ) -> None: """Save network weights, optimizer parameters, scheduler parameters to a checkpoint. Args: model (Model): The PyTorch model. optimizer (torch.optim.Optimizer): The model optimizer. scheduler (torch.optim.lr_scheduler.LRScheduler): The optimization scheduler. grad_scaler (torch.amp.GradScaler): The gradient scaler (for mixed precision training). iteration (int): Current iteration number. """ self.callbacks.on_save_checkpoint_start(model, iteration) checkpoint_file = f"iter_{iteration:09}.pt" if distributed.get_rank() == 0: state_dict = dict( model=model.state_dict(), optimizer=optimizer.state_dict(), scheduler=scheduler.state_dict(), grad_scaler=grad_scaler.state_dict(), iteration=iteration, ) state_dict = misc.to(state_dict, device="cpu") self.callbacks.on_save_checkpoint(model, state_dict=state_dict) # Wait for previous saver thread to end. if self.save_thread: self.save_thread.join() # Run the checkpoint saver in a separate thread. self.save_thread = threading.Thread( target=self._save_worker_local, daemon=False, args=(state_dict, checkpoint_file, distributed.get_rank()), ) self.save_thread.start() # Note: Checkpoints are saved on a separate thread and this callback is not accurate. # Please check logs from on_save_checkpoint_success() for better accuracy self.callbacks.on_save_checkpoint_end(model=None, iteration=iteration) @misc.timer("checkpoint saving (local)") def _save_worker_local(self, state_dict: dict[str, torch.Tensor], checkpoint_file: str, rank: int = 0) -> None: """Worker to save checkpoint to local disk, spawned with a child thread (runs in parallel with the training). Args: state_dict (dict[str, torch.Tensor]): The state dict of the model/optimizer/scheduler. checkpoint_file (str): The file name of the model checkpoint. rank (int): GPU device (default: 0). """ checkpoint_path = os.path.join(self.checkpoint_dir_local, checkpoint_file) os.makedirs(self.checkpoint_dir_local, exist_ok=True) try: torch.save(state_dict, checkpoint_path) if rank == 0: self._write_latest_checkpoint_file(checkpoint_file) log.success(f"Saved checkpoint (local): {checkpoint_path}") iteration = int(checkpoint_file.replace("iter_", "").replace(".pt", "")) self.callbacks.on_save_checkpoint_success(iteration=iteration) except Exception as e: # noqa: BLE001 log.exception(f"Checkpoint failed to save (local): {e}") @misc.timer("checkpoint loading") def load( self, model: Model, optimizer: torch.optim.Optimizer | None = None, scheduler: torch.optim.lr_scheduler.LRScheduler | None = None, grad_scaler: torch.amp.GradScaler | None = None, ) -> int: """Load network weights and optimizer states from a checkpoint in a single process. The priority of the checkpoint loading logic is: 1. Attempt to resume training if possible by looking for latest_checkpoint.txt under the same name. 2. If no latest checkpoint were found, it loads the model weights specified by config_checkpoint.path. - This is typically used for inference mode. - If config_checkpoint.load_optimizer_state is True, then also load the optimizer and scheduler states. 3. If none of the above, randomly initialize the model parameters and train from scratch. Args: model (Model): The PyTorch model. optimizer (torch.optim.Optimizer | None): The model optimizer (default: None). scheduler (torch.optim.lr_scheduler.LRScheduler | None): The optimization scheduler (default: None). grad_scaler (torch.amp.GradScaler | None): The gradient scaler (for mixed precision training). Returns: iteration (int): the iteration number to start/resume from. """ self.callbacks.on_load_checkpoint_start(model) latest_checkpoint_file = self._read_latest_checkpoint_file() if latest_checkpoint_file is not None: # 1. Resume training from latest_checkpoint.txt under the same name. checkpoint_dir = self.checkpoint_dir_local checkpoint_path = os.path.join(checkpoint_dir, latest_checkpoint_file) resume = True only_resume_scheduler = True else: if self.load_path: # 2. Load the module weights specified by config_checkpoint.path. checkpoint_path = self.load_path resume = self.load_training_state only_resume_scheduler = self.only_load_scheduler_state else: # 3. Randomly initialize the model parameters and train from scratch. checkpoint_path = None resume = False only_resume_scheduler = False # Load checkpoint. if checkpoint_path is not None: self._check_checkpoint_exists(checkpoint_path) log.info(f"Loading checkpoint (local): {checkpoint_path}") state_dict = torch.load(checkpoint_path, map_location=lambda storage, loc: storage, weights_only=False) log.success(f"Complete loading checkpoint (local): {checkpoint_path}") self.callbacks.on_load_checkpoint(model, state_dict=state_dict) # Load the state dicts. log.info("- Loading the model...") if "model" in state_dict: model.load_state_dict(state_dict["model"], strict=self.strict_resume) else: model.load_state_dict(state_dict, strict=self.strict_resume) if resume or only_resume_scheduler: iteration = state_dict["iteration"] assert scheduler log.info("- Loading the scheduler...") scheduler.load_state_dict(state_dict["scheduler"]) scheduler.last_epoch = iteration else: iteration = 0 if resume: assert optimizer log.info("- Loading the optimizer...") optimizer.load_state_dict(state_dict["optimizer"]) log.info("- Loading the gradient scaler...") grad_scaler.load_state_dict(state_dict["grad_scaler"]) log.success(f"Done with loading the checkpoint (iteration {iteration}).") else: log.success("Done with loading the checkpoint.") else: # Checkpoint not found and not specified. We will train everything from scratch. iteration = 0 log.info("Training from scratch.") torch.cuda.empty_cache() self.callbacks.on_load_checkpoint_end(model) return iteration def _read_latest_checkpoint_file(self) -> str | None: """Get the file name of the latest saved checkpoint. If it doesn't exist, return None. Returns: checkpoint_file (str | None): file name of the latest saved checkpoint. """ checkpoint_file = None latest_path = os.path.join(self.checkpoint_dir_local, "latest_checkpoint.txt") if os.path.isfile(latest_path): checkpoint_file = open(latest_path).read().strip() return checkpoint_file def _write_latest_checkpoint_file(self, checkpoint_file: str) -> None: """Track the file name of the latest saved checkpoint. Args: checkpoint_file (str): file name of the latest saved checkpoint. """ content = f"{checkpoint_file}\n" latest_path = os.path.join(self.checkpoint_dir_local, "latest_checkpoint.txt") with open(latest_path, "w") as file: file.write(content) def _check_checkpoint_exists(self, checkpoint_path: str) -> None: """If the file checkpoint_path does not exist, raise an error. Args: checkpoint_path (str): full path to the checkpoint. """ if not os.path.exists(checkpoint_path): raise FileNotFoundError(f"File not found (local): {checkpoint_path}") def finalize(self) -> None: """Finalize the checkpointer.""" if self.save_thread: self.save_thread.join()