# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import IO import numpy as np import torch from cosmos_predict1.utils.easy_io.handlers.base import BaseFileHandler try: import imageio except ImportError: imageio = None class ImageioVideoHandler(BaseFileHandler): str_like = False def load_from_fileobj(self, file: IO[bytes], format: str = "mp4", mode: str = "rgb", **kwargs): """ Load video from a file-like object using imageio with specified format and color mode. Parameters: file (IO[bytes]): A file-like object containing video data. format (str): Format of the video file (default 'mp4'). mode (str): Color mode of the video, 'rgb' or 'gray' (default 'rgb'). Returns: tuple: A tuple containing an array of video frames and metadata about the video. """ file.seek(0) video_reader = imageio.get_reader(file, format, **kwargs) video_frames = [] for frame in video_reader: if mode == "gray": import cv2 # Convert frame to grayscale if mode is gray frame = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) frame = np.expand_dims(frame, axis=2) # Keep frame dimensions consistent video_frames.append(frame) return np.array(video_frames), video_reader.get_meta_data() def dump_to_fileobj( self, obj: np.ndarray | torch.Tensor, file: IO[bytes], format: str = "mp4", # pylint: disable=redefined-builtin fps: int = 17, quality: int = 5, **kwargs, ): """ Save an array of video frames to a file-like object using imageio. Parameters: obj (np.ndarray): An array of frames to be saved as video. file (IO[bytes]): A file-like object to which the video data will be written. format (str): Format of the video file (default 'mp4'). fps (int): Frames per second of the output video (default 30). """ if isinstance(obj, torch.Tensor): assert obj.dtype == torch.uint8 obj = obj.cpu().numpy() h, w = obj.shape[1:-1] kwargs = { "fps": fps, "quality": quality, "macro_block_size": 1, "ffmpeg_params": ["-s", f"{w}x{h}"], "output_params": ["-f", "mp4"], } imageio.mimsave(file, obj, format, **kwargs) def dump_to_str(self, obj, **kwargs): raise NotImplementedError