# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from apex.multi_tensor_apply import multi_tensor_applier from cosmos_predict1.utils import distributed, log class FusedAdam(torch.optim.Optimizer): """Implements Adam algorithm. Currently GPU-only. Requires Apex to be installed via ``pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./``. This version of fused Adam implements 2 fusions. * Fusion of the Adam update's elementwise operations * A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches. :class:`apex.optimizers.FusedAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``, or ``torch.optim.Adam`` with ``adam_w_mode=False``:: opt = apex.optimizers.FusedAdam(model.parameters(), lr = ....) ... opt.step() :class:`apex.optimizers.FusedAdam` may be used with or without Amp. If you wish to use :class:`FusedAdam` with Amp, you may choose any ``opt_level``:: opt = apex.optimizers.FusedAdam(model.parameters(), lr = ....) model, opt = amp.initialize(model, opt, opt_level="O0" or "O1 or "O2") ... opt.step() In general, ``opt_level="O1"`` is recommended. .. warning:: A previous version of :class:`FusedAdam` allowed a number of additional arguments to ``step``. These additional arguments are now deprecated and unnecessary. Adam was been proposed in `Adam: A Method for Stochastic Optimization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups. lr (float, optional): learning rate. (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square. (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability. (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) NOT SUPPORTED in FusedAdam! adam_w_mode (boolean, optional): Apply L2 regularization or weight decay True for decoupled weight decay(also known as AdamW) (default: True) capturable (bool, optional): whether to use the version of the optimizer that can be used with CUDA Graphs. (default: False) master_weights (bool, optional): whether to maintain FP32 master weights in the optimizer with FP16 mixed precision training, currently can only be used with capturable set to True. (default: False) .. _Adam - A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__( self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, adam_w_mode=True, weight_decay=0.0, amsgrad=False, capturable=False, master_weights=False, ): if amsgrad: raise RuntimeError("FusedAdam does not support the AMSGrad variant.") if master_weights and not capturable: raise RuntimeError("Master weights is currently only supported with the capturable version.") # If the optimizer is capturable then LR should be a tensor (on GPU) log.warning(f"FusedAdam master_weights: {master_weights} capturable: {capturable}") lr = torch.tensor(lr, dtype=torch.float32) if capturable else lr defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay) super(FusedAdam, self).__init__(params, defaults) self.adam_w_mode = 1 if adam_w_mode else 0 self.capturable = capturable self.master_weights = master_weights self.param_groups_master = None if capturable: for idx, group in enumerate(self.param_groups): if len(group["params"]) == 0: continue device = group["params"][0].device for item in ["lr"]: if isinstance(group[item], float): group[item] = torch.tensor(group[item], dtype=torch.float32) self.param_groups[idx][item] = group[item].to(device=device) self._step_supports_amp_scaling = True if multi_tensor_applier.available: import amp_C # Skip buffer self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device="cuda") self.multi_tensor_adam = amp_C.multi_tensor_adam self.multi_tensor_adam_capturable = amp_C.multi_tensor_adam_capturable self.multi_tensor_adam_capturable_master = amp_C.multi_tensor_adam_capturable_master else: raise RuntimeError("apex.optimizers.FusedAdam requires cuda extensions") def step(self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None, grad_scaler=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. The remaining arguments are deprecated, and are only retained (for the moment) for error-checking purposes. """ if any(p is not None for p in [grads, output_params, scale, grad_norms]): raise RuntimeError( "FusedAdam has been updated. " "Simply initialize it identically to torch.optim.Adam, and call step() with no arguments." ) loss = None if closure is not None: loss = closure() if self.param_groups_master is None: # Create full precision master weights self.param_groups_master = [] for i, pg in enumerate(self.param_groups): param_list = pg["params"] self.param_groups_master.append( { "params": [p.clone().detach().float() if self.master_weights else None for p in param_list], } ) for group, group_master in zip(self.param_groups, self.param_groups_master): if len(group["params"]) == 0: continue device = group["params"][0].device bias_correction = 1 if "bias_correction" in group and group["bias_correction"] else 0 beta1, beta2 = group["betas"] # assume same step across group now to simplify things # per parameter step can be easily support by making it tensor, or pass list into kernel if "step" in group: if self.capturable: group["step"] = ( group["step"].to(device=device) if isinstance(group["step"], torch.Tensor) else torch.tensor(group["step"], dtype=torch.int32, device=device) ) group["step"] += (self._dummy_overflow_buf != 1).to(torch.int) else: group["step"] += 1 else: group["step"] = 1 if not self.capturable else torch.tensor([1], dtype=torch.int, device=device) if self.capturable: group["lr"] = ( group["lr"].to(device=device) if isinstance(group["lr"], torch.Tensor) else torch.tensor(group["lr"], dtype=torch.float32, device=device) ) # create lists for multi-tensor apply g_16, p_16, m_16, v_16 = [], [], [], [] g_bf, p_bf, m_bf, v_bf = [], [], [], [] g_32, p_32, m_32, v_32 = [], [], [], [] p_16_master = [] p_32_master = [] bf16_master = [] for p, p_master in zip(group["params"], group_master["params"]): if p.grad is None: continue if p.grad.data.is_sparse: raise RuntimeError( "FusedAdam does not support sparse gradients, please consider SparseAdam instead" ) state = self.state[p] # State initialization if len(state) == 0: # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p.data).float() # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p.data).float() if p.dtype == torch.float16: if self.master_weights: p_16_master.append(p_master.data) g_16.append(p.grad.data) p_16.append(p.data) m_16.append(state["exp_avg"]) v_16.append(state["exp_avg_sq"]) elif p.dtype == torch.bfloat16: if self.master_weights: bf16_master.append(p_master.data) g_bf.append(p.grad) p_bf.append(p) m_bf.append(state["exp_avg"]) v_bf.append(state["exp_avg_sq"]) elif p.dtype == torch.float32: if self.master_weights: p_32_master.append(p_master.data) g_32.append(p.grad.data) p_32.append(p.data) m_32.append(state["exp_avg"]) v_32.append(state["exp_avg_sq"]) else: raise RuntimeError("FusedAdam only support fp16 and fp32.") # If the optimizer is capturable, then if there's a grad scaler it works # on the GPU + a different multi_tensor_applier should be called if self.capturable: # overflow check of gradients found_inf = ( grad_scaler._check_inf_per_device(self)[device] if grad_scaler is not None else torch.zeros((1,), device=device) ) self._dummy_overflow_buf.copy_(found_inf) # get unscale scale factor scale, inv_scale = None, None if grad_scaler: scale = grad_scaler._get_scale_async() inv_scale = scale.double().reciprocal().float() else: scale = torch.ones((1,), device=device, dtype=torch.float32) inv_scale = torch.ones((1,), device=device, dtype=torch.float32) if len(g_16) > 0: multi_tensor_applier( ( self.multi_tensor_adam_capturable_master if self.master_weights else self.multi_tensor_adam_capturable ), self._dummy_overflow_buf, [g_16, p_16, m_16, v_16, p_16_master] if self.master_weights else [g_16, p_16, m_16, v_16], group["lr"], beta1, beta2, group["eps"], group["step"], self.adam_w_mode, bias_correction, group["weight_decay"], inv_scale, ) if len(g_bf) > 0: multi_tensor_applier( ( self.multi_tensor_adam_capturable_master if self.master_weights else self.multi_tensor_adam_capturable ), self._dummy_overflow_buf, [g_bf, p_bf, m_bf, v_bf, bf16_master] if self.master_weights else [g_bf, p_bf, m_bf, v_bf], group["lr"], beta1, beta2, group["eps"], group["step"], self.adam_w_mode, bias_correction, group["weight_decay"], inv_scale, ) if len(g_32) > 0: multi_tensor_applier( ( self.multi_tensor_adam_capturable_master if self.master_weights else self.multi_tensor_adam_capturable ), self._dummy_overflow_buf, [g_32, p_32, m_32, v_32, p_32_master] if self.master_weights else [g_32, p_32, m_32, v_32], group["lr"], beta1, beta2, group["eps"], group["step"], self.adam_w_mode, bias_correction, group["weight_decay"], inv_scale, ) else: if len(g_16) > 0: multi_tensor_applier( self.multi_tensor_adam, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16], group["lr"], beta1, beta2, group["eps"], group["step"], self.adam_w_mode, bias_correction, group["weight_decay"], ) if len(g_bf) > 0: multi_tensor_applier( self.multi_tensor_adam, self._dummy_overflow_buf, [g_bf, p_bf, m_bf, v_bf], group["lr"], beta1, beta2, group["eps"], group["step"], self.adam_w_mode, bias_correction, group["weight_decay"], ) if len(g_32) > 0: multi_tensor_applier( self.multi_tensor_adam, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32], group["lr"], beta1, beta2, group["eps"], group["step"], self.adam_w_mode, bias_correction, group["weight_decay"], ) return loss def load_state_dict(self, state_dict): super().load_state_dict(state_dict) for group in self.param_groups: if self.capturable: group["lr"] = ( group["lr"].cuda() if isinstance(group["lr"], torch.Tensor) else torch.tensor(group["lr"], dtype=torch.float32).cuda() ) if "step" in group: if self.capturable: if distributed.get_rank() == 0: step = ( group["step"].cuda() if isinstance(group["step"], torch.Tensor) else torch.tensor([group["step"]], dtype=torch.int32).cuda() ) else: step = torch.zeros(1, dtype=torch.int32).cuda() # make it compatible with FSDP optimizer distributed.broadcast(step, 0) group["step"] = step elif isinstance(group["step"], torch.Tensor): group["step"] = group["step"].item() for p in group["params"]: state = self.state[p] if "exp_avg" in state: state["exp_avg"] = state["exp_avg"].float() state["exp_avg_sq"] = state["exp_avg_sq"].float()