# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ast import builtins import collections.abc as abc import importlib import inspect import logging import os import pickle import uuid from collections import OrderedDict from contextlib import contextmanager from copy import deepcopy from dataclasses import is_dataclass from typing import Any, Dict, List, Tuple, Union import attrs import yaml from omegaconf import DictConfig, ListConfig, OmegaConf from cosmos_predict1.utils.lazy_config.file_io import PathManager from cosmos_predict1.utils.lazy_config.registry import _convert_target_to_string try: import dill as dill_pickle except ImportError: dill_pickle = None try: import cloudpickle except ImportError: cloudpickle = None __all__ = ["LazyCall", "LazyConfig"] def sort_dict(d: Dict[str, Any]) -> OrderedDict[str, Any]: return OrderedDict(sorted(d.items(), key=lambda x: x[0])) def dict_representer(dumper: yaml.Dumper, data: OrderedDict[str, Any]) -> yaml.nodes.MappingNode: return dumper.represent_mapping("tag:yaml.org,2002:map", data.items()) def sort_recursive(obj: Union[Dict[str, Any], List[Any], Any]) -> Union[OrderedDict[str, Any], List[Any], Any]: if isinstance(obj, dict): return sort_dict({k: sort_recursive(v) for k, v in obj.items()}) elif isinstance(obj, list): return [sort_recursive(item) for item in obj] return obj yaml.add_representer(OrderedDict, dict_representer) def get_default_params(cls_or_func): if callable(cls_or_func): # inspect signature for function signature = inspect.signature(cls_or_func) else: # inspect signature for class signature = inspect.signature(cls_or_func.__init__) params = signature.parameters default_params = { name: param.default for name, param in params.items() if param.default is not inspect.Parameter.empty } return default_params class LazyCall: """ Wrap a callable so that when it's called, the call will not be executed, but returns a dict that describes the call. LazyCall object has to be called with only keyword arguments. Positional arguments are not yet supported. Examples: :: from detectron2.config import instantiate, LazyCall layer_cfg = LazyCall(nn.Conv2d)(in_channels=32, out_channels=32) layer_cfg.out_channels = 64 # can edit it afterwards layer = instantiate(layer_cfg) """ def __init__(self, target): if not (callable(target) or isinstance(target, (str, abc.Mapping))): raise TypeError(f"target of LazyCall must be a callable or defines a callable! Got {target}") self._target = target def __call__(self, **kwargs): if is_dataclass(self._target) or attrs.has(self._target): # omegaconf object cannot hold dataclass type # https://github.com/omry/omegaconf/issues/784 target = _convert_target_to_string(self._target) else: target = self._target kwargs["_target_"] = target _final_params = get_default_params(self._target) _final_params.update(kwargs) return DictConfig(content=_final_params, flags={"allow_objects": True}) def _visit_dict_config(cfg, func): """ Apply func recursively to all DictConfig in cfg. """ if isinstance(cfg, DictConfig): func(cfg) for v in cfg.values(): _visit_dict_config(v, func) elif isinstance(cfg, ListConfig): for v in cfg: _visit_dict_config(v, func) def _validate_py_syntax(filename): # see also https://github.com/open-mmlab/mmcv/blob/master/mmcv/utils/config.py with PathManager.open(filename, "r") as f: content = f.read() try: ast.parse(content) except SyntaxError as e: raise SyntaxError(f"Config file {filename} has syntax error!") from e def _cast_to_config(obj): # if given a dict, return DictConfig instead if isinstance(obj, dict): return DictConfig(obj, flags={"allow_objects": True}) return obj _CFG_PACKAGE_NAME = "detectron2._cfg_loader" """ A namespace to put all imported config into. """ def _random_package_name(filename): # generate a random package name when loading config files return _CFG_PACKAGE_NAME + str(uuid.uuid4())[:4] + "." + os.path.basename(filename) @contextmanager def _patch_import(): """ Enhance relative import statements in config files, so that they: 1. locate files purely based on relative location, regardless of packages. e.g. you can import file without having __init__ 2. do not cache modules globally; modifications of module states has no side effect 3. support other storage system through PathManager, so config files can be in the cloud 4. imported dict are turned into omegaconf.DictConfig automatically """ old_import = builtins.__import__ def find_relative_file(original_file, relative_import_path, level): # NOTE: "from . import x" is not handled. Because then it's unclear # if such import should produce `x` as a python module or DictConfig. # This can be discussed further if needed. relative_import_err = """ Relative import of directories is not allowed within config files. Within a config file, relative import can only import other config files. """.replace( "\n", " " ) if not len(relative_import_path): raise ImportError(relative_import_err) cur_file = os.path.dirname(original_file) for _ in range(level - 1): cur_file = os.path.dirname(cur_file) cur_name = relative_import_path.lstrip(".") for part in cur_name.split("."): cur_file = os.path.join(cur_file, part) if not cur_file.endswith(".py"): cur_file += ".py" if not PathManager.isfile(cur_file): cur_file_no_suffix = cur_file[: -len(".py")] if PathManager.isdir(cur_file_no_suffix): raise ImportError(f"Cannot import from {cur_file_no_suffix}." + relative_import_err) else: raise ImportError( f"Cannot import name {relative_import_path} from " f"{original_file}: {cur_file} does not exist." ) return cur_file def new_import(name, globals=None, locals=None, fromlist=(), level=0): if ( # Only deal with relative imports inside config files level != 0 and globals is not None and (globals.get("__package__", "") or "").startswith(_CFG_PACKAGE_NAME) ): cur_file = find_relative_file(globals["__file__"], name, level) _validate_py_syntax(cur_file) spec = importlib.machinery.ModuleSpec(_random_package_name(cur_file), None, origin=cur_file) module = importlib.util.module_from_spec(spec) module.__file__ = cur_file with PathManager.open(cur_file) as f: content = f.read() exec(compile(content, cur_file, "exec"), module.__dict__) for name in fromlist: # turn imported dict into DictConfig automatically val = _cast_to_config(module.__dict__[name]) module.__dict__[name] = val return module return old_import(name, globals, locals, fromlist=fromlist, level=level) builtins.__import__ = new_import yield new_import builtins.__import__ = old_import class LazyConfig: """ Provide methods to save, load, and overrides an omegaconf config object which may contain definition of lazily-constructed objects. """ @staticmethod def load_rel(filename: str, keys: Union[None, str, Tuple[str, ...]] = None): """ Similar to :meth:`load()`, but load path relative to the caller's source file. This has the same functionality as a relative import, except that this method accepts filename as a string, so more characters are allowed in the filename. """ caller_frame = inspect.stack()[1] caller_fname = caller_frame[0].f_code.co_filename assert caller_fname != "", "load_rel Unable to find caller" caller_dir = os.path.dirname(caller_fname) filename = os.path.join(caller_dir, filename) return LazyConfig.load(filename, keys) @staticmethod def load(filename: str, keys: Union[None, str, Tuple[str, ...]] = None): """ Load a config file. Args: filename: absolute path or relative path w.r.t. the current working directory keys: keys to load and return. If not given, return all keys (whose values are config objects) in a dict. """ has_keys = keys is not None filename = filename.replace("/./", "/") # redundant if os.path.splitext(filename)[1] not in [".py", ".yaml", ".yml"]: raise ValueError(f"Config file {filename} has to be a python or yaml file.") if filename.endswith(".py"): _validate_py_syntax(filename) with _patch_import(): # Record the filename module_namespace = { "__file__": filename, "__package__": _random_package_name(filename), } with PathManager.open(filename) as f: content = f.read() # Compile first with filename to: # 1. make filename appears in stacktrace # 2. make load_rel able to find its parent's (possibly remote) location exec(compile(content, filename, "exec"), module_namespace) ret = module_namespace else: with PathManager.open(filename) as f: obj = yaml.unsafe_load(f) ret = OmegaConf.create(obj, flags={"allow_objects": True}) if has_keys: if isinstance(keys, str): return _cast_to_config(ret[keys]) else: return tuple(_cast_to_config(ret[a]) for a in keys) else: if filename.endswith(".py"): # when not specified, only load those that are config objects ret = DictConfig( { name: _cast_to_config(value) for name, value in ret.items() if isinstance(value, (DictConfig, ListConfig, dict)) and not name.startswith("_") }, flags={"allow_objects": True}, ) return ret @staticmethod def save_pkl(cfg, filename: str) -> str: """ Saves a Config object to a file using pickle serialization. This method is typically used when the configuration object contains complex objects, such as lambdas, that are not supported by simpler serialization methods like YAML. The function attempts to create a deep copy of the configuration object before serialization to ensure that the original object remains unmodified. Args: cfg: A Config object to be serialized and saved. filename: The path and name of the file where the configuration should be saved. The function assumes the file extension indicates a pickle format (e.g., .pkl). Returns: str: The filename to which the configuration was saved. This can be used to verify the file location or log the outcome. Notes: - The function logs a warning if the configuration is successfully saved using pickle. - If saving fails, an error is logged with the exception details. """ logger = logging.getLogger(__name__) try: cfg = deepcopy(cfg) except Exception: pass try: with PathManager.open(filename, "wb") as f: pickle.dump(cfg, f) logger.warning(f"Config is saved using pickle at {filename}.") except Exception as e: logger.error(f"Failed to save config to {filename}: {e}. Trying dill or cloudpickle instead") if dill_pickle: try: with PathManager.open(filename, "wb") as f: pickle.dump(dill_pickle.dumps(cfg, recurse=True), f) logger.warning(f"Config is saved using dill at {filename}.") except Exception as e: logger.error(f"Failed to save config to {filename}: {e}.") if cloudpickle: try: with PathManager.open(filename, "wb") as f: pickle.dump(cloudpickle.dumps(cfg), f) logger.warning(f"Config is saved using cloudpickle at {filename}.") except Exception as e: logger.error(f"Failed to save config to {filename}: {e}.") else: logger.error("cloudpickle is not available. Cannot save the config.") raise e return filename @staticmethod def save_yaml(cfg, filename: str) -> str: """ Saves a Config object to a file using YAML serialization. This method is beneficial when the configuration object's content needs to be human-readable and easily editable. YAML is suitable for configurations that do not contain complex types like lambdas, which must be handled differently. The function converts unserializable items to strings before saving to ensure compatibility with YAML serialization. Args: cfg: A Config object to be serialized and saved. It handles both DictConfig and ListConfig types. filename: The path and name of the file where the configuration should be saved. The function does not require a specific file extension but typically uses '.yaml'. Returns: str: The filename to which the configuration was saved. This can be used to verify the file location or log the outcome. Notes: - The function logs a warning if the configuration is successfully saved using YAML. - If saving fails, an error is logged with the exception details. """ logger = logging.getLogger(__name__) try: cfg = deepcopy(cfg) except Exception: pass # Define a function to check if an item is serializable to YAML def is_serializable(item): try: OmegaConf.to_yaml(item) return True except Exception as e: return False # Function to convert unserializable items to strings def serialize_config(config): if isinstance(config, DictConfig): for key, value in config.items(): if isinstance(value, (DictConfig, ListConfig)): try: if "_target_" in value: default_params = get_default_params(value["_target_"]) for default_key, default_v in default_params.items(): if default_key not in value: value[default_key] = default_v except Exception as e: logger.error(f"Failed to add default argument values: {e}") serialize_config(value) else: if not is_serializable(value) and value is not None: config[key] = str(value) elif isinstance(config, ListConfig): for i, item in enumerate(config): if isinstance(item, (DictConfig, ListConfig)): serialize_config(item) else: if not is_serializable(item) and item is not None: config[i] = str(item) else: raise NotImplementedError("Input config must be a DictConfig or ListConfig.") return config # Convert Config object to a DictConfig object. config_dict = attrs.asdict(cfg) config_omegaconf = DictConfig(content=config_dict, flags={"allow_objects": True}) # Serialize the DictConfig object by converting non-serializable objects to strings. config_omegaconf = serialize_config(config_omegaconf) config_dict: Dict[str, Any] = OmegaConf.to_container(config_omegaconf, resolve=True) sorted_config: OrderedDict[str, Any] = sort_recursive(config_dict) with open(filename, "w") as f: yaml.dump(sorted_config, f, default_flow_style=False) logger.warning(f"Config is saved using omegaconf at {filename}.") return filename