# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import collections import collections.abc import functools import json import os import random import time from contextlib import ContextDecorator from pathlib import Path from typing import Any, Callable, List, Optional, Tuple, TypeVar from urllib.parse import urlparse import boto3 import numpy as np import termcolor import torch from torch import nn from torch.distributed._functional_collectives import AsyncCollectiveTensor from torch.distributed._tensor.api import DTensor from cosmos_predict1.utils import distributed, log from cosmos_predict1.utils.easy_io import easy_io def to( data: Any, device: str | torch.device | None = None, dtype: torch.dtype | None = None, memory_format: torch.memory_format = torch.preserve_format, ) -> Any: """Recursively cast data into the specified device, dtype, and/or memory_format. The input data can be a tensor, a list of tensors, a dict of tensors. See the documentation for torch.Tensor.to() for details. Args: data (Any): Input data. device (str | torch.device): GPU device (default: None). dtype (torch.dtype): data type (default: None). memory_format (torch.memory_format): memory organization format (default: torch.preserve_format). Returns: data (Any): Data cast to the specified device, dtype, and/or memory_format. """ assert ( device is not None or dtype is not None or memory_format is not None ), "at least one of device, dtype, memory_format should be specified" if isinstance(data, torch.Tensor): is_cpu = (isinstance(device, str) and device == "cpu") or ( isinstance(device, torch.device) and device.type == "cpu" ) data = data.to( device=device, dtype=dtype, memory_format=memory_format, non_blocking=(not is_cpu), ) return data elif isinstance(data, collections.abc.Mapping): return type(data)({key: to(data[key], device=device, dtype=dtype, memory_format=memory_format) for key in data}) elif isinstance(data, collections.abc.Sequence) and not isinstance(data, (str, bytes)): return type(data)([to(elem, device=device, dtype=dtype, memory_format=memory_format) for elem in data]) else: return data def serialize(data: Any) -> Any: """Serialize data by hierarchically traversing through iterables. Args: data (Any): Input data. Returns: data (Any): Serialized data. """ if isinstance(data, collections.abc.Mapping): return type(data)({key: serialize(data[key]) for key in data}) elif isinstance(data, collections.abc.Sequence) and not isinstance(data, (str, bytes)): return type(data)([serialize(elem) for elem in data]) else: try: json.dumps(data) except TypeError: data = str(data) return data def print_environ_variables(env_vars: list[str]) -> None: """Print a specific list of environment variables. Args: env_vars (list[str]): List of specified environment variables. """ for env_var in env_vars: if env_var in os.environ: log.info(f"Environment variable {Color.green(env_var)}: {Color.yellow(os.environ[env_var])}") else: log.warning(f"Environment variable {Color.green(env_var)} not set!") def set_random_seed(seed: int, by_rank: bool = False) -> None: """Set random seed. This includes random, numpy, Pytorch. Args: seed (int): Random seed. by_rank (bool): if true, each GPU will use a different random seed. """ if by_rank: seed += distributed.get_rank() log.info(f"Using random seed {seed}.") random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) # sets seed on the current CPU & all GPUs def arch_invariant_rand( shape: List[int] | Tuple[int], dtype: torch.dtype, device: str | torch.device, seed: int | None = None ): """Produce a GPU-architecture-invariant randomized Torch tensor. Args: shape (list or tuple of ints): Output tensor shape. dtype (torch.dtype): Output tensor type. device (torch.device): Device holding the output. seed (int): Optional randomization seed. Returns: tensor (torch.tensor): Randomly-generated tensor. """ # Create a random number generator, optionally seeded rng = np.random.RandomState(seed) # # Generate random numbers using the generator random_array = rng.standard_normal(shape).astype(np.float32) # Use standard_normal for normal distribution # Convert to torch tensor and return return torch.from_numpy(random_array).to(dtype=dtype, device=device) T = TypeVar("T", bound=Callable[..., Any]) class timer(ContextDecorator): # noqa: N801 """Simple timer for timing the execution of code. It can be used as either a context manager or a function decorator. The timing result will be logged upon exit. Example: def func_a(): time.sleep(1) with timer("func_a"): func_a() @timer("func_b) def func_b(): time.sleep(1) func_b() """ def __init__(self, context: str, debug: bool = False): self.context = context self.debug = debug def __enter__(self) -> None: self.tic = time.time() def __exit__(self, exc_type, exc_value, traceback) -> None: # noqa: ANN001 time_spent = time.time() - self.tic if self.debug: log.debug(f"Time spent on {self.context}: {time_spent:.4f} seconds") else: log.debug(f"Time spent on {self.context}: {time_spent:.4f} seconds") def __call__(self, func: T) -> T: @functools.wraps(func) def wrapper(*args, **kwargs): # noqa: ANN202 tic = time.time() result = func(*args, **kwargs) time_spent = time.time() - tic if self.debug: log.debug(f"Time spent on {self.context}: {time_spent:.4f} seconds") else: log.debug(f"Time spent on {self.context}: {time_spent:.4f} seconds") return result return wrapper # type: ignore class TrainingTimer: """Timer for timing the execution of code, aggregating over multiple training iterations. It is used as a context manager to measure the execution time of code and store the timing results for each function. The context managers can be nested. Attributes: results (dict): A dictionary to store timing results for various code. Example: timer = Timer() for i in range(100): with timer("func_a"): func_a() avg_time = sum(timer.results["func_a"]) / len(timer.results["func_a"]) print(f"func_a() took {avg_time} seconds.") """ def __init__(self) -> None: self.results = dict() self.average_results = dict() self.start_time = [] self.func_stack = [] self.reset() def reset(self) -> None: self.results = {key: [] for key in self.results} def __enter__(self) -> TrainingTimer: self.start_time.append(time.time()) return self def __exit__(self, exc_type, exc_value, traceback) -> None: # noqa: ANN001 end_time = time.time() result = end_time - self.start_time.pop() key = self.func_stack.pop() self.results.setdefault(key, []) self.results[key].append(result) def __call__(self, func_name: str) -> TrainingTimer: self.func_stack.append(func_name) return self def __getattr__(self, func_name: str) -> TrainingTimer: return self.__call__(func_name) def nested(self, func_name: str) -> TrainingTimer: return self.__call__(func_name) def compute_average_results(self) -> dict[str, float]: results = dict() for key, value_list in self.results.items(): results[key] = sum(value_list) / len(value_list) return results def timeout_handler(timeout_period: float, signum: int, frame: int) -> None: # What to do when the process gets stuck. For now, we simply end the process. error_message = f"Timeout error: more than {timeout_period} seconds passed since the last iteration." raise TimeoutError(error_message) class Color: """A convenience class to colorize strings in the console. Example: import print("This is {Color.red('important')}.") """ @staticmethod def red(x: str) -> str: return termcolor.colored(str(x), color="red") @staticmethod def green(x: str) -> str: return termcolor.colored(str(x), color="green") @staticmethod def cyan(x: str) -> str: return termcolor.colored(str(x), color="cyan") @staticmethod def yellow(x: str) -> str: return termcolor.colored(str(x), color="yellow") class BufferCnt: """ Buffer counter which keeps track of the condition when called and returns True when the condition in met "thres" amount of times, otherwise returns False. Example usage: buf = BufferCnt(thres=3) for _ in range(5): if buf(random.random() > 0.5): print("We got lucky 3 times out of 5.") Args: thres (int): The amount of times the expression needs to be True before returning True. reset_over_thres (bool): Whether to reset the buffer after returning True. """ def __init__(self, thres=10, reset_over_thres=False): self._cnt = 0 self.thres = thres self.reset_over_thres = reset_over_thres def __call__(self, expre, thres=None): if expre is True: self._cnt += 1 else: self._cnt = 0 if thres is None: thres = self.thres if self._cnt >= thres: if self.reset_over_thres: self.reset() return True return False @property def cnt(self): return self._cnt def reset(self): self._cnt = 0 def get_local_tensor_if_DTensor(tensor: torch.Tensor | DTensor) -> torch.tensor: if isinstance(tensor, DTensor): local = tensor.to_local() # As per PyTorch documentation, if the communication is not finished yet, we need to wait for it to finish # https://pytorch.org/docs/stable/distributed.tensor.html#torch.distributed.tensor.DTensor.to_local if isinstance(local, AsyncCollectiveTensor): return local.wait() else: return local return tensor def disabled_train(self: Any, mode: bool = True) -> Any: """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self def count_params(model: nn.Module, verbose=False) -> int: total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) if verbose: print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.") return total_params def expand_dims_like(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: while x.dim() != y.dim(): x = x.unsqueeze(-1) return x def download_from_s3_with_cache( s3_path: str, cache_fp: Optional[str] = None, cache_dir: Optional[str] = None, rank_sync: bool = True, backend_args: Optional[dict] = None, backend_key: Optional[str] = None, ) -> str: """download data from S3 with optional caching. This function first attempts to load the data from a local cache file. If the cache file doesn't exist, it downloads the data from S3 to the cache location. Caching is performed in a rank-aware manner using `distributed.barrier()` to ensure only one download occurs across distributed workers (if `rank_sync` is True). Args: s3_path (str): The S3 path of the data to load. cache_fp (str, optional): The path to the local cache file. If None, a filename will be generated based on `s3_path` within `cache_dir`. cache_dir (str, optional): The directory to store the cache file. If None, the environment variable `COSMOS_CACHE_DIR` (defaulting to "/tmp") will be used. rank_sync (bool, optional): Whether to synchronize download across distributed workers using `distributed.barrier()`. Defaults to True. backend_args (dict, optional): The backend arguments passed to easy_io to construct the backend. backend_key (str, optional): The backend key passed to easy_io to registry the backend or retrieve the backend if it is already registered. Returns: cache_fp (str): The path to the local cache file. Raises: FileNotFoundError: If the data cannot be found in S3 or the cache. """ cache_dir = os.environ.get("TORCH_HOME") if cache_dir is None else cache_dir cache_dir = ( os.environ.get("COSMOS_CACHE_DIR", os.path.expanduser("~/.cache/cosmos")) if cache_dir is None else cache_dir ) cache_dir = os.path.expanduser(cache_dir) if cache_fp is None: cache_fp = os.path.join(cache_dir, s3_path.replace("s3://", "")) if not cache_fp.startswith("/"): cache_fp = os.path.join(cache_dir, cache_fp) if distributed.get_rank() == 0: if os.path.exists(cache_fp): # check the size of cache_fp if os.path.getsize(cache_fp) < 1: os.remove(cache_fp) log.warning(f"Removed empty cache file {cache_fp}.") if rank_sync: if not os.path.exists(cache_fp): log.critical(f"Local cache {cache_fp} Not exist! Downloading {s3_path} to {cache_fp}.") log.info(f"backend_args: {backend_args}") log.info(f"backend_key: {backend_key}") easy_io.copyfile_to_local( s3_path, cache_fp, dst_type="file", backend_args=backend_args, backend_key=backend_key ) log.info(f"Downloaded {s3_path} to {cache_fp}.") else: log.info(f"Local cache {cache_fp} already exist! {s3_path} -> {cache_fp}.") distributed.barrier() else: if not os.path.exists(cache_fp): easy_io.copyfile_to_local( s3_path, cache_fp, dst_type="file", backend_args=backend_args, backend_key=backend_key ) log.info(f"Downloaded {s3_path} to {cache_fp}.") return cache_fp def load_from_s3_with_cache( s3_path: str, cache_fp: Optional[str] = None, cache_dir: Optional[str] = None, rank_sync: bool = True, backend_args: Optional[dict] = None, backend_key: Optional[str] = None, easy_io_kwargs: Optional[dict] = None, ) -> Any: """Loads data from S3 with optional caching. This function first attempts to load the data from a local cache file. If the cache file doesn't exist, it downloads the data from S3 to the cache location and then loads it. Caching is performed in a rank-aware manner using `distributed.barrier()` to ensure only one download occurs across distributed workers (if `rank_sync` is True). Args: s3_path (str): The S3 path of the data to load. cache_fp (str, optional): The path to the local cache file. If None, a filename will be generated based on `s3_path` within `cache_dir`. cache_dir (str, optional): The directory to store the cache file. If None, the environment variable `COSMOS_CACHE_DIR` (defaulting to "/tmp") will be used. rank_sync (bool, optional): Whether to synchronize download across distributed workers using `distributed.barrier()`. Defaults to True. backend_args (dict, optional): The backend arguments passed to easy_io to construct the backend. backend_key (str, optional): The backend key passed to easy_io to registry the backend or retrieve the backend if it is already registered. Returns: Any: The loaded data from the S3 path or cache file. Raises: FileNotFoundError: If the data cannot be found in S3 or the cache. """ cache_fp = download_from_s3_with_cache(s3_path, cache_fp, cache_dir, rank_sync, backend_args, backend_key) if easy_io_kwargs is None: easy_io_kwargs = {} return easy_io.load(cache_fp, **easy_io_kwargs) def sync_s3_dir_to_local( s3_dir: str, s3_credential_path: str, cache_dir: Optional[str] = None, rank_sync: bool = True, ) -> str: """ Download an entire directory from S3 to the local cache directory. Args: s3_dir (str): The AWS S3 directory to download. s3_credential_path (str): The path to the AWS S3 credentials file. rank_sync (bool, optional): Whether to synchronize download across distributed workers using `distributed.barrier()`. Defaults to True. cache_dir (str, optional): The cache folder to sync the S3 directory to. If None, the environment variable `COSMOS_CACHE_DIR` (defaulting to "~/.cache/cosmos") will be used. Returns: local_dir (str): The path to the local directory. """ if not s3_dir.startswith("s3://"): # If the directory exists locally, return the local path assert os.path.exists(s3_dir), f"{s3_dir} is not a S3 path or a local path." return s3_dir # Load AWS credentials from the file with open(s3_credential_path, "r") as f: credentials = json.load(f) # Create an S3 client s3 = boto3.client( "s3", **credentials, ) # Parse the S3 URL parsed_url = urlparse(s3_dir) source_bucket = parsed_url.netloc source_prefix = parsed_url.path.lstrip("/") # If the local directory is not specified, use the default cache directory cache_dir = ( os.environ.get("COSMOS_CACHE_DIR", os.path.expanduser("~/.cache/cosmos")) if cache_dir is None else cache_dir ) cache_dir = os.path.expanduser(cache_dir) Path(cache_dir).mkdir(parents=True, exist_ok=True) # List objects in the bucket with the given prefix response = s3.list_objects_v2(Bucket=source_bucket, Prefix=source_prefix) # Download each matching object for obj in response.get("Contents", []): if obj["Key"].startswith(source_prefix): # Create the full path for the destination file, preserving the directory structure rel_path = os.path.relpath(obj["Key"], source_prefix) dest_path = os.path.join(cache_dir, source_prefix, rel_path) # Ensure the directory exists os.makedirs(os.path.dirname(dest_path), exist_ok=True) # Check if the file already exists if os.path.exists(dest_path): continue else: log.info(f"Downloading {obj['Key']} to {dest_path}") # Download the file if not rank_sync or distributed.get_rank() == 0: s3.download_file(source_bucket, obj["Key"], dest_path) if rank_sync: distributed.barrier() local_dir = os.path.join(cache_dir, source_prefix) return local_dir