# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import List import torch class WarmupLambdaLR(torch.optim.lr_scheduler.LambdaLR): def __init__(self, optimizer, warmup, last_epoch=-1, verbose=False): # Define the lambda function based on the warmup period self.warmup = warmup def lr_lambda(epoch): # Increase lr linearly for the first 'warmup' epochs if epoch < warmup: return float(epoch + 1) / warmup # After 'warmup' epochs, keep lr constant return 1.0 # Initialize the parent class with the generated lr_lambda super(WarmupLambdaLR, self).__init__(optimizer, lr_lambda, last_epoch, verbose) # cosine lr decay scheduler with warmup from https://github.com/karpathy/nanoGPT/blob/master/train.py#L228 class WarmupCosineLR(torch.optim.lr_scheduler.LRScheduler): def __init__( self, optimizer: torch.optim.Optimizer, warmup_iters: int, lr_decay_iters: int, min_lr: float, last_epoch: int = -1, ): self.warmup_iters = warmup_iters self.lr_decay_iters = lr_decay_iters self.min_lr = min_lr super().__init__(optimizer, last_epoch) def get_lr(self) -> List[float]: # 1) linear warmup for warmup_iters steps if self.last_epoch < self.warmup_iters: return [base_lr * self.last_epoch / self.warmup_iters for base_lr in self.base_lrs] # 2) if it > lr_decay_iters, return min learning rate if self.last_epoch > self.lr_decay_iters: return [self.min_lr for _ in self.base_lrs] # 3) in between, use cosine decay down to min learning rate decay_ratio = (self.last_epoch - self.warmup_iters) / (self.lr_decay_iters - self.warmup_iters) assert 0 <= decay_ratio <= 1 coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1 return [self.min_lr + coeff * (base_lr - self.min_lr) for base_lr in self.base_lrs]