# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import hashlib from pathlib import Path from huggingface_hub import snapshot_download from scripts.download_guardrail_checkpoints import download_guardrail_checkpoints def parse_args(): parser = argparse.ArgumentParser( description="Download NVIDIA Cosmos Predict1 autoregressive models from Hugging Face" ) parser.add_argument( "--model_sizes", nargs="*", default=[ "4B", "5B", "12B", "13B", ], # Download all by default choices=["4B", "5B", "12B", "13B"], help="Which model sizes to download. Possible values: 4B, 5B, 12B, 13B.", ) parser.add_argument( "--checkpoint_dir", type=str, default="checkpoints", help="Directory to save the downloaded checkpoints." ) args = parser.parse_args() return args MD5_CHECKSUM_LOOKUP = { "Cosmos-Predict1-12B/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf", "Cosmos-Predict1-12B/model.pt": "ed748fabcb544d30d35385a8c28efb4d", "Cosmos-Predict1-13B-Video2World/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf", "Cosmos-Predict1-13B-Video2World/model.pt": "21a9fb02c61fbebc96c1af1fcaa5893f", "Cosmos-Predict1-4B/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf", "Cosmos-Predict1-4B/model.pt": "5fdc62fc87fbf470dbcc2288589b7942", "Cosmos-Predict1-5B-Video2World/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf", "Cosmos-Predict1-5B-Video2World/model.pt": "2a48a854bb6e04abb6b7c72979f1a69b", "Cosmos-Predict1-7B-Decoder-DV8x16x16ToCV8x8x8-720p/aux_vars.pt": "29e450d81839e82bb4bdbf12e43a74f1", "Cosmos-Predict1-7B-Decoder-DV8x16x16ToCV8x8x8-720p/model.pt": "a30149cc3730f3142b01fd374b6076f8", "Cosmos-Predict1-7B-Decoder-DV8x16x16ToCV8x8x8-720p/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf", "Cosmos-Tokenize1-CV8x8x8-720p/autoencoder.jit": "7f658580d5cf617ee1a1da85b1f51f0d", "Cosmos-Tokenize1-CV8x8x8-720p/decoder.jit": "ff21a63ed817ffdbe4b6841111ec79a8", "Cosmos-Tokenize1-CV8x8x8-720p/encoder.jit": "f5834d03645c379bc0f8ad14b9bc0299", "Cosmos-Tokenize1-CV8x8x8-720p/mean_std.pt": "f07680ad7eefae57d698778e2a0c7c96", "Cosmos-Tokenize1-CV8x8x8-720p/image_mean_std.pt": "9f19fd3312fc1198e4905ada02e68bce", "Cosmos-Tokenize1-DV8x16x16-720p/autoencoder.jit": "606b8585b637f06057725cbb67036ae6", "Cosmos-Tokenize1-DV8x16x16-720p/decoder.jit": "f0c8a9d992614a43e7ce24ebfc901e26", "Cosmos-Tokenize1-DV8x16x16-720p/encoder.jit": "95186b0410346a3f0cf250b76daec452", "google-t5/t5-11b/pytorch_model.bin": "f890878d8a162e0045a25196e27089a3", "google-t5/t5-11b/tf_model.h5": "e081fc8bd5de5a6a9540568241ab8973", } def get_md5_checksum(checkpoints_dir, model_name): print("---------------------") for key, value in MD5_CHECKSUM_LOOKUP.items(): if key.startswith(model_name + "/"): print(f"Verifying checkpoint {key}...") file_path = checkpoints_dir.joinpath(key) # File must exist if not Path(file_path).exists(): print(f"Checkpoint {key} does not exist.") return False # File must match give MD5 checksum with open(file_path, "rb") as f: file_md5 = hashlib.md5(f.read()).hexdigest() if file_md5 != value: print(f"MD5 checksum of checkpoint {key} does not match.") return False print(f"Model checkpoints for {model_name} exist with matched MD5 checksums.") return True def main(args): ORG_NAME = "nvidia" # Mapping from size argument to Hugging Face repository name model_map = { "4B": "Cosmos-Predict1-4B", "5B": "Cosmos-Predict1-5B-Video2World", "12B": "Cosmos-Predict1-12B", "13B": "Cosmos-Predict1-13B-Video2World", } # Additional models that are always downloaded extra_models = [ "Cosmos-Predict1-7B-Decoder-DV8x16x16ToCV8x8x8-720p", "Cosmos-Tokenize1-CV8x8x8-720p", "Cosmos-Tokenize1-DV8x16x16-720p", "google-t5/t5-11b", ] # Create local checkpoints folder checkpoints_dir = Path(args.checkpoint_dir) checkpoints_dir.mkdir(parents=True, exist_ok=True) download_kwargs = dict( allow_patterns=["README.md", "model.pt", "image_mean_std.pt", "mean_std.pt", "config.json", "*.jit"] ) # Download the requested Autoregressive models for size in args.model_sizes: model_name = model_map[size] repo_id = f"{ORG_NAME}/{model_name}" local_dir = checkpoints_dir.joinpath(model_name) if not get_md5_checksum(checkpoints_dir, model_name): local_dir.mkdir(parents=True, exist_ok=True) print(f"Downloading {repo_id} to {local_dir}...") snapshot_download( repo_id=repo_id, local_dir=str(local_dir), local_dir_use_symlinks=False, **download_kwargs, ) # Download the always-included models for model_name in extra_models: if model_name == "google-t5/t5-11b": repo_id = model_name else: repo_id = f"{ORG_NAME}/{model_name}" local_dir = checkpoints_dir.joinpath(model_name) if not get_md5_checksum(checkpoints_dir, model_name): local_dir.mkdir(parents=True, exist_ok=True) print(f"Downloading {repo_id} to {local_dir}...") # Download all files snapshot_download( repo_id=repo_id, local_dir=str(local_dir), local_dir_use_symlinks=False, ) download_guardrail_checkpoints(args.checkpoint_dir) if __name__ == "__main__": args = parse_args() main(args)