# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import hashlib import json import os import shutil from glob import glob from pathlib import Path import torch from huggingface_hub import snapshot_download from safetensors.torch import load_file from scripts.download_guardrail_checkpoints import download_guardrail_checkpoints def parse_args(): parser = argparse.ArgumentParser(description="Download NVIDIA Cosmos Predict1 Gen3C models from Hugging Face") parser.add_argument( "--checkpoint_dir", type=str, default="checkpoints", help="Directory to save the downloaded checkpoints." ) args = parser.parse_args() return args def convert_pixtral_checkpoint(checkpoint_dir: str, checkpoint_name: str, vit_type: str): """ Main function to convert Pixtral vision model weights to checkpoint and optionally verify and save the converted checkpoint. Args: checkpoint_dir (str): Path to the checkpoint directory checkpoint_name (str): Name of the checkpoint vit_type (str): Type of ViT used in the Pixtral model This function performs the following steps: 0. Download the checkpoint from Hugging Face 1. Loads the original Pixtral checkpoint 2. Splits the checkpoint into vision encoder, projector, and LLM weights 3. Reorganizes the weights to match the expected format 4. Extracts and verifies the vision encoder configuration 5. Optionally verifies the converted checkpoint by loading it into a VisionTransformer 6. Optionally saves the converted checkpoint and configuration """ save_dir = os.path.join(checkpoint_dir, checkpoint_name) os.makedirs(save_dir, exist_ok=True) # Save the converted checkpoint save_path = os.path.join(save_dir, "model.pt") if os.path.exists(save_path) and os.path.getsize(save_path) > 0: print(f"Checkpoint {save_path} already exists and is not empty") return pixtral_ckpt_dir = os.path.join(checkpoint_dir, "Pixtral-12B-2409") os.makedirs(pixtral_ckpt_dir, exist_ok=True) repo_id = "mistralai/Pixtral-12B-2409" print(f"Downloading {repo_id} to {pixtral_ckpt_dir}...") snapshot_download( repo_id=repo_id, allow_patterns=["params.json", "consolidated.safetensors"], local_dir=pixtral_ckpt_dir, local_dir_use_symlinks=False, ) orig_dtype = torch.get_default_dtype() dtype = torch.bfloat16 torch.set_default_dtype(dtype) # Load checkpoint file ckpt_files = glob(os.path.join(pixtral_ckpt_dir, "*.safetensors")) assert len(ckpt_files) == 1, "ckpt_dir should contain only one file" ckpt_path = ckpt_files[0] ckpt = load_file(ckpt_path) # Split checkpoint into weights of vision encoder, projector, and LLM vit_key_prefix = "vision_encoder." vit_ckpt = {} for key, value in ckpt.items(): if key.startswith(vit_key_prefix): vit_ckpt[key.lstrip(vit_key_prefix)] = value projector_key_prefix = "vision_language_adapter." projector_ckpt = {} substring_replacement_map = { "w_in.": "projector.0.", "w_out.": "projector.2.", } for key, value in ckpt.items(): if key.startswith(projector_key_prefix): key = key.lstrip(projector_key_prefix) for old, new in substring_replacement_map.items(): key = key.replace(old, new) projector_ckpt[key] = value llm_ckpt = {} for key, value in ckpt.items(): if key.startswith(vit_key_prefix) or key.startswith(projector_key_prefix): continue llm_ckpt[key] = value vlm_ckpt = {} for key, value in llm_ckpt.items(): vlm_ckpt["model." + key] = value for key, value in projector_ckpt.items(): vlm_ckpt["mm_projector." + key] = value for key, value in vit_ckpt.items(): vlm_ckpt["vision_encoder." + key] = value # Load config config_path = os.path.join(pixtral_ckpt_dir, "params.json") with open(config_path, "r") as f: pixtral_config = json.load(f) # Extract the vision encoder configuration vision_encoder_config = { "dim": pixtral_config["vision_encoder"]["hidden_size"], "num_channels": pixtral_config["vision_encoder"]["num_channels"], "image_size": pixtral_config["vision_encoder"]["image_size"], "patch_size": pixtral_config["vision_encoder"]["patch_size"], "rope_theta": pixtral_config["vision_encoder"]["rope_theta"], "ffn_hidden_size": pixtral_config["vision_encoder"]["intermediate_size"], "n_layers": pixtral_config["vision_encoder"]["num_hidden_layers"], "n_heads": pixtral_config["vision_encoder"]["num_attention_heads"], "n_kv_heads": pixtral_config["vision_encoder"]["num_attention_heads"], "norm_type": "rmsnorm", "norm_eps": pixtral_config["norm_eps"], "image_token_id": pixtral_config["vision_encoder"]["image_token_id"], } # Configuration for the 400M ViT of Pixtral 12B VLM vit_config = dict( dim=1024, num_channels=3, image_size=1024, patch_size=16, rope_theta=10000, ffn_hidden_size=4096, n_layers=24, n_heads=16, n_kv_heads=16, norm_type="rmsnorm", norm_eps=1e-5, image_token_id=10, ) # Compare the two configurations for key, value in vit_config.items(): assert vision_encoder_config[key] == value, f"Mismatch in {key}: {vision_encoder_config[key]} != {value}" llm_config_keys = [ "dim", "n_layers", "head_dim", "hidden_dim", "n_heads", "n_kv_heads", "rope_theta", "norm_eps", "vocab_size", ] assert set(list(pixtral_config.keys())) == set(llm_config_keys + ["vision_encoder"]), "Config keys mismatch" replace_map = { "hidden_dim": "ffn_hidden_size", } llm_config = {} for k, v in pixtral_config.items(): if k in llm_config_keys: llm_config[replace_map.get(k, k)] = v elif k == "vision_encoder": llm_config["vision_encoder"] = vit_type else: raise ValueError(f"Unknown key: {k}") ckpt_to_save = {"model": vlm_ckpt, "mm_projector": projector_ckpt, "vision_encoder": vit_ckpt} torch.save(ckpt_to_save, save_path) print(f"Model saved to {save_path}") # Save config config_path = os.path.join(save_dir, "config.json") with open(config_path, "w") as f: json.dump(llm_config, f) torch.set_default_dtype(orig_dtype) # Reset the default dtype # Remove the original Pixtral checkpoint shutil.rmtree(pixtral_ckpt_dir, ignore_errors=True) print(f"Removed {pixtral_ckpt_dir}") MD5_CHECKSUM_LOOKUP = { "Cosmos-Predict1-14B-Text2World/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf", "Cosmos-Predict1-14B-Text2World/model.pt": "c69d1c6e51dc78b959040e8c4035a29b", "Cosmos-Predict1-14B-Video2World/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf", "Cosmos-Predict1-14B-Video2World/model.pt": "eaa7aa3678f61d88108c41d7fe201b18", "Cosmos-Predict1-7B-WorldInterpolator/model.pt": "48a0bdc99d5e41eee05ba8597c4851da", "Cosmos-Predict1-7B-Text2World/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf", "Cosmos-Predict1-7B-Text2World/model.pt": "fe9ed68e16cf37b10e7414c9b3ee81e1", "Cosmos-Predict1-7B-Video2World/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf", "Cosmos-Predict1-7B-Video2World/model.pt": "ebcdb19c4c4a6a0e1e0bb65e346f6867", "Cosmos-Tokenize1-CV8x8x8-720p/mean_std.pt": "f07680ad7eefae57d698778e2a0c7c96", "Cosmos-Tokenize1-CV8x8x8-720p/image_mean_std.pt": "9f19fd3312fc1198e4905ada02e68bce", "Cosmos-UpsamplePrompt1-12B-Text2World/guardrail/video_content_safety_filter/safety_filter.pt": "b46dc2ad821fc3b0d946549d7ade19cf", "Cosmos-UpsamplePrompt1-12B-Text2World/model.pt": "52d7a6b8b1ac44d856b4c1ea3f8c8c74", "Cosmos-Predict1-7B-Text2World-Sample-AV-Multiview/model.pt": "e3a6ef070deaae0678acd529dc749ea4", "Cosmos-Predict1-7B-Video2World-Sample-AV-Multiview/model.pt": "1653f87dce3d558ee01416593552a91c", "Gen3C-Cosmos-7B/model.pt": "38644bf823aa5272acef60cfad8bc0f7", "google-t5/t5-11b/pytorch_model.bin": "f890878d8a162e0045a25196e27089a3", "google-t5/t5-11b/tf_model.h5": "e081fc8bd5de5a6a9540568241ab8973", } def get_md5_checksum(checkpoints_dir, model_name): print("---------------------") # Check if there are any expected files for this model expected_files = [key for key in MD5_CHECKSUM_LOOKUP if key.startswith(model_name + "/")] if not expected_files: # No expected files in MD5_CHECKSUM_LOOKUP, check if the directory exists and has content model_dir = checkpoints_dir / model_name if not model_dir.exists() or not any(model_dir.iterdir()): print(f"Directory for {model_name} does not exist or is empty. Download required.") return False else: print(f"Directory for {model_name} exists and contains files. Assuming download is complete.") return True # Proceed with checksum verification for models with expected files for key, value in MD5_CHECKSUM_LOOKUP.items(): if key.startswith(model_name + "/"): print(f"Verifying checkpoint {key}...") file_path = checkpoints_dir.joinpath(key) # File must exist if not Path(file_path).exists(): print(f"Checkpoint {key} does not exist.") return False # File must match given MD5 checksum with open(file_path, "rb") as f: file_md5 = hashlib.md5(f.read()).hexdigest() if file_md5 != value: print(f"MD5 checksum of checkpoint {key} does not match.") return False print(f"Model checkpoints for {model_name} exist with matched MD5 checksums.") return True def main(args): ORG_NAME = "nvidia" # Additional models that are always downloaded extra_models = [ "Cosmos-Tokenize1-CV8x8x8-720p", "google-t5/t5-11b", ] # Create local checkpoints folder checkpoints_dir = Path(args.checkpoint_dir) checkpoints_dir.mkdir(parents=True, exist_ok=True) download_kwargs = dict( allow_patterns=[ "README.md", "model.pt", "mean_std.pt", "image_mean_std.pt", "config.json", "*.jit", "guardrail/*", ] ) # Download the requested diffusion models model_name = "Gen3C-Cosmos-7B" repo_id = f"{ORG_NAME}/{model_name}" local_dir = checkpoints_dir.joinpath(model_name) if not get_md5_checksum(checkpoints_dir, model_name): local_dir.mkdir(parents=True, exist_ok=True) print(f"Downloading {repo_id} to {local_dir}...") snapshot_download( repo_id=repo_id, local_dir=str(local_dir), local_dir_use_symlinks=False, **download_kwargs ) # Download the always-included models for model_name in extra_models: if model_name == "google-t5/t5-11b": repo_id = model_name else: repo_id = f"{ORG_NAME}/{model_name}" local_dir = checkpoints_dir.joinpath(model_name) if not get_md5_checksum(checkpoints_dir, model_name): local_dir.mkdir(parents=True, exist_ok=True) print(f"Downloading {repo_id} to {local_dir}...") # Download all files for Guardrail snapshot_download( repo_id=repo_id, local_dir=str(local_dir), local_dir_use_symlinks=False, ) if __name__ == "__main__": args = parse_args() main(args)