# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import pickle from typing import Tuple import numpy as np import torch from transformers import T5EncoderModel, T5TokenizerFast """example command CUDA_HOME=$CONDA_PREFIX PYTHONPATH=$(pwd) python scripts/get_t5_embeddings.py --dataset_path datasets/hdvila """ def parse_args() -> argparse.ArgumentParser: parser = argparse.ArgumentParser(description="Compute T5 embeddings for text prompts") parser.add_argument("--dataset_path", type=str, default="datasets/hdvila", help="Root path to the dataset") parser.add_argument("--max_length", type=int, default=512, help="Maximum length of the text embedding") parser.add_argument( "--pretrained_model_name_or_path", type=str, default="google-t5/t5-11b", help="T5 model name or the local path" ) parser.add_argument("--cache_dir", type=str, default="checkpoints", help="Directory to cache the T5 model") return parser.parse_args() def init_t5( pretrained_model_name_or_path: str = "google-t5/t5-11b", max_length: int = 512, cache_dir: str = "~/.cache" ) -> Tuple[T5TokenizerFast, T5EncoderModel]: """Initialize and return the T5 tokenizer and text encoder.""" tokenizer = T5TokenizerFast.from_pretrained( pretrained_model_name_or_path, model_max_length=max_length, cache_dir=cache_dir ) text_encoder = T5EncoderModel.from_pretrained(pretrained_model_name_or_path, cache_dir=cache_dir) text_encoder.to("cuda") text_encoder.eval() return tokenizer, text_encoder @torch.inference_mode() def encode_for_batch(tokenizer, encoder, prompts: list[str], max_length=512) -> list: """ Encode a batch of text prompts to a batch of T5 embeddings. Parameters: tokenizer: T5 embedding tokenizer. encoder: T5 embedding text encoder. prompts: A batch of text prompts. max_length: Sequence length of text embedding (defaults to 512). """ batch_encoding = tokenizer.batch_encode_plus( prompts, return_tensors="pt", truncation=True, padding="max_length", max_length=max_length, return_length=True, return_offsets_mapping=False, ) # We expect all the processing is done on GPU. input_ids = batch_encoding.input_ids.cuda() attn_mask = batch_encoding.attention_mask.cuda() outputs = encoder(input_ids=input_ids, attention_mask=attn_mask) encoded_text = outputs.last_hidden_state lengths = attn_mask.sum(dim=1).cpu() for batch_id in range(encoded_text.shape[0]): encoded_text[batch_id][lengths[batch_id] :] = 0 encoded_text = encoded_text.cpu().numpy().astype(np.float16) encoded_text = encoded_text[:, :max_length] # trim zeros to save space encoded_text = [encoded_text[batch_id][: lengths[batch_id]] for batch_id in range(encoded_text.shape[0])] return encoded_text def main(args) -> None: metas_dir = os.path.join(args.dataset_path, "metas") metas_list = [ os.path.join(metas_dir, filename) for filename in sorted(os.listdir(metas_dir)) if filename.endswith(".txt") ] t5_xxl_dir = os.path.join(args.dataset_path, "t5_xxl") os.makedirs(t5_xxl_dir, exist_ok=True) # Initialize T5 tokenizer, text_encoder = init_t5(cache_dir=args.cache_dir) for meta_filename in metas_list: t5_xxl_filename = os.path.join(t5_xxl_dir, os.path.basename(meta_filename).replace(".txt", ".pickle")) if os.path.exists(t5_xxl_filename): # Skip if the file already exists continue with open(meta_filename, "r") as fp: prompt = fp.read().strip() # Compute T5 embeddings encoded_text = encode_for_batch(tokenizer, text_encoder, [prompt]) # Save T5 embeddings as pickle file with open(t5_xxl_filename, "wb") as fp: pickle.dump(encoded_text, fp) if __name__ == "__main__": args = parse_args() main(args)