# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch from cosmos_predict1.autoregressive.configs.base.model_config import create_video2world_model_config from cosmos_predict1.autoregressive.utils.checkpoint import obtain_tensor_parallel_state_dict from cosmos_predict1.utils import log def shard_checkpoint(checkpoint_path, tensor_parallel_size, model_size, model_family, target_backend="pytorch"): assert checkpoint_path.endswith(".pt"), "Checkpoint path must end with .pt" assert model_family == "cosmos", "Only cosmos model family is currently supported" assert model_size == "4b", "Only 4B model size is currently supported" model_config, _ = create_video2world_model_config( model_ckpt_path=checkpoint_path, model_family=model_family, model_size=model_size, tensor_model_parallel_size=tensor_parallel_size, tokenizer_ckpt_path="checkpoints/Cosmos-Tokenize1-DV8x16x16-720p/ema.jit", ) log.info(f"Sharding checkpoint {checkpoint_path} with {tensor_parallel_size} ranks") checkpoint = torch.load(checkpoint_path, map_location="cpu", mmap=True) for tensor_parallel_rank in range(tensor_parallel_size): shard = obtain_tensor_parallel_state_dict( checkpoint, tensor_parallel_size, tensor_parallel_rank, model_config, target_backend=target_backend ) shard_path = checkpoint_path.replace(".pt", f"_model_mp_{tensor_parallel_rank}.pt") log.info(f"Saving shard {shard_path}") torch.save(shard, shard_path) def parse_args(): parser = argparse.ArgumentParser(description="Shard NVIDIA Cosmos Predict1 autoregressive models") parser.add_argument( "--checkpoint_path", "-c", type=str, required=True, default="checkpoints/Cosmos-Predict1-4B/model.pt", help="Path to the checkpoint to shard", ) parser.add_argument("--tensor_parallel_size", "-t", type=int, required=True, help="Number of tensor parallel ranks") parser.add_argument("--target_backend", "-b", type=str, required=False, default="pytorch", help="Target backend") parser.add_argument("--model_size", "-s", type=str, required=True, help="Model size") parser.add_argument("--model_family", "-f", type=str, required=False, default="cosmos", help="Model family") return parser.parse_args() if __name__ == "__main__": args = parse_args() shard_checkpoint( args.checkpoint_path, args.tensor_parallel_size, args.model_size, args.model_family, args.target_backend )