Spaces:
Runtime error
Runtime error
File size: 15,985 Bytes
e8bdafd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import hashlib
from pathlib import Path
from typing import TYPE_CHECKING, Any, Dict, List, Tuple
import torch
from accelerate.logging import get_logger
from safetensors.torch import load_file, save_file
from torch.utils.data import Dataset
from torchvision import transforms
from typing_extensions import override
from finetune.constants import LOG_LEVEL, LOG_NAME
from .utils import (
load_images,
load_images_from_videos,
load_prompts,
load_videos,
preprocess_image_with_resize,
preprocess_video_with_buckets,
preprocess_video_with_resize,
)
if TYPE_CHECKING:
from finetune.trainer import Trainer
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
import decord # isort:skip
import numpy as np
import os
from finetune.utils.camera_utils import get_camera_condition
decord.bridge.set_bridge("torch")
logger = get_logger(LOG_NAME, LOG_LEVEL)
class BaseI2VDataset(Dataset):
"""
Base dataset class for Image-to-Video (I2V) training.
This dataset loads prompts, videos and corresponding conditioning images for I2V training.
Args:
data_root (str): Root directory containing the dataset files
caption_column (str): Path to file containing text prompts/captions
video_column (str): Path to file containing video paths
image_column (str): Path to file containing image paths
device (torch.device): Device to load the data on
encode_video_fn (Callable[[torch.Tensor], torch.Tensor], optional): Function to encode videos
"""
def __init__(
self,
data_root: str,
cache_root: str,
metadata_path: str,
enable_align_factor: bool,
device: torch.device = torch.device("cpu"),
trainer: "Trainer" = None,
*args,
**kwargs,
) -> None:
super().__init__()
self.trainer = trainer
self.data_root = data_root
self.cache_root = cache_root
self.enable_align_factor = enable_align_factor
self.train_resolution_str = "x".join(str(x) for x in self.trainer.args.train_resolution)
self.video_latent_dir = cache_root / "video_latent" / self.trainer.args.model_name / self.train_resolution_str
self.prompt_embeddings_dir = cache_root / "prompt_embeddings"
self.video_latent_dir.mkdir(parents=True, exist_ok=True)
self.prompt_embeddings_dir.mkdir(parents=True, exist_ok=True)
self.all_metadata = np.load(os.path.join(data_root, metadata_path), allow_pickle=True)["arr_0"].tolist()
logger.info(f"Data Count (all): {len(self.all_metadata)}", main_process_only=True)
self.all_metadata = list(filter(lambda x: x['camera_extrinsics'].shape[0] > self.trainer.args.train_resolution[0], self.all_metadata))
logger.info(f"Data Count (num_frames > {self.trainer.args.train_resolution[0]}): {len(self.all_metadata)}", main_process_only=True)
logger.info(f"Data Count (final): {len(self.all_metadata)}", main_process_only=True)
self.device = device
self.encode_video = trainer.encode_video
self.encode_text = trainer.encode_text
def __len__(self) -> int:
return len(self.all_metadata)
def __getitem__(self, index: int) -> Dict[str, Any]:
if isinstance(index, list):
# Here, index is actually a list of data objects that we need to return.
# The BucketSampler should ideally return indices. But, in the sampler, we'd like
# to have information about num_frames, height and width. Since this is not stored
# as metadata, we need to read the video to get this information. You could read this
# information without loading the full video in memory, but we do it anyway. In order
# to not load the video twice (once to get the metadata, and once to return the loaded video
# based on sampled indices), we cache it in the BucketSampler. When the sampler is
# to yield, we yield the cache data instead of indices. So, this special check ensures
# that data is not loaded a second time. PRs are welcome for improvements.
return index
metadata = self.all_metadata[index % len(self.all_metadata)]
video_path = Path(os.path.join(self.data_root, metadata['video_path']))
image = load_images_from_videos([video_path])[0]
prompt: str = metadata['long_caption']
camera_extrinsics = torch.from_numpy(metadata['camera_extrinsics']) # [F, 4, 4]
fx, fy, cx, cy = metadata['camera_intrinsics']
camera_intrinsics = torch.tensor([
[fx, 0, cx],
[0, fy, cy],
[0, 0, 1]
]) # 3x3) # [3, 3]
align_factor = metadata['align_factor'] if self.enable_align_factor else 1.0
prompt_hash = str(hashlib.sha256(prompt.encode()).hexdigest())
prompt_embedding_path = self.prompt_embeddings_dir / (prompt_hash + ".safetensors")
encoded_video_path = self.video_latent_dir / (video_path.stem + ".safetensors")
if prompt_embedding_path.exists():
prompt_embedding = load_file(prompt_embedding_path)["prompt_embedding"]
logger.debug(
f"process {self.trainer.accelerator.process_index}: Loaded prompt embedding from {prompt_embedding_path}",
main_process_only=False,
)
else:
prompt_embedding = self.encode_text(prompt)
prompt_embedding = prompt_embedding.to("cpu")
# [1, seq_len, hidden_size] -> [seq_len, hidden_size]
prompt_embedding = prompt_embedding[0]
try:
save_file({"prompt_embedding": prompt_embedding}, prompt_embedding_path)
except:
pass
logger.info(f"Saved prompt embedding to {prompt_embedding_path}", main_process_only=False)
(
frames,
image,
camera_extrinsics,
camera_intrinsics,
) = self.preprocess(
video_path,
image,
camera_extrinsics,
camera_intrinsics,
self.trainer.args.use_precompute_video_latents,
)
H, W = frames.shape[-2:]
image = self.image_transform(image)
frames = self.video_transform(frames)
video = frames # F, C, H, W
if encoded_video_path.exists() and self.trainer.args.use_precompute_video_latents:
encoded_video = load_file(encoded_video_path)["encoded_video"]
logger.debug(f"Loaded encoded video from {encoded_video_path}", main_process_only=False)
else:
frames = frames.unsqueeze(0).permute(0, 2, 1, 3, 4).contiguous() # [F, C, H, W] -> [B, C, F, H, W], value in [-1,1]
encoded_video = self.encode_video(frames)
encoded_video = encoded_video[0].to("cpu") # [1, C, F, H, W] -> [C, F, H, W]
if self.trainer.args.precompute:
try:
save_file({"encoded_video": encoded_video}, encoded_video_path)
except:
pass
logger.info(f"Saved encoded video to {encoded_video_path}", main_process_only=False)
if not self.trainer.args.precompute:
# plucker embedding
cond_frame_index = torch.zeros(1, device=camera_extrinsics.device, dtype=torch.long)
plucker_embedding, relative_c2w_RT_4x4 = get_camera_condition( # B 6 F H W
H, W, camera_intrinsics.unsqueeze(0), camera_extrinsics.unsqueeze(0), mode="w2c",
cond_frame_index=cond_frame_index, align_factor=align_factor
) # [B=1, C=6, F, H, W]
plucker_embedding = plucker_embedding[0].contiguous()
else:
plucker_embedding = None
ret = {
"image": image,
"prompt_embedding": prompt_embedding, # [C, H, W]
"prompt": prompt,
"video": video, # F, C, H, W
"encoded_video": encoded_video, # [C, F//4, H//8, W//8]
"plucker_embedding": plucker_embedding, # [B=1, C=6, F, H, W]
"video_metadata": {
"num_frames": encoded_video.shape[1],
"height": encoded_video.shape[2],
"width": encoded_video.shape[3],
},
}
return ret
def preprocess(self, video_path: Path | None, image_path: Path | None) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Loads and preprocesses a video and an image.
If either path is None, no preprocessing will be done for that input.
Args:
video_path: Path to the video file to load
image_path: Path to the image file to load
Returns:
A tuple containing:
- video(torch.Tensor) of shape [F, C, H, W] where F is number of frames,
C is number of channels, H is height and W is width
- image(torch.Tensor) of shape [C, H, W]
"""
raise NotImplementedError("Subclass must implement this method")
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
"""
Applies transformations to a video.
Args:
frames (torch.Tensor): A 4D tensor representing a video
with shape [F, C, H, W] where:
- F is number of frames
- C is number of channels (3 for RGB)
- H is height
- W is width
Returns:
torch.Tensor: The transformed video tensor
"""
raise NotImplementedError("Subclass must implement this method")
def image_transform(self, image: torch.Tensor) -> torch.Tensor:
"""
Applies transformations to an image.
Args:
image (torch.Tensor): A 3D tensor representing an image
with shape [C, H, W] where:
- C is number of channels (3 for RGB)
- H is height
- W is width
Returns:
torch.Tensor: The transformed image tensor
"""
raise NotImplementedError("Subclass must implement this method")
class I2VDatasetWithResize(BaseI2VDataset):
"""
A dataset class for image-to-video generation that resizes inputs to fixed dimensions.
This class preprocesses videos and images by resizing them to specified dimensions:
- Videos are resized to max_num_frames x height x width
- Images are resized to height x width
Args:
max_num_frames (int): Maximum number of frames to extract from videos
height (int): Target height for resizing videos and images
width (int): Target width for resizing videos and images
"""
def __init__(self, max_num_frames: int, height: int, width: int, keep_aspect_ratio: bool, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.max_num_frames = max_num_frames
self.height = height
self.width = width
self.keep_aspect_ratio = keep_aspect_ratio
self.__frame_transforms = transforms.Compose([transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)])
self.__image_transforms = self.__frame_transforms
def _resize_for_rectangle_crop(self, frames, H, W):
'''
:param frames: C,F,H,W
:param image_size: H,W
:return: frames: C,F,crop_H,crop_W; camera_intrinsics: F,3,3
'''
ori_H, ori_W = frames.shape[-2:]
# if ori_W / ori_H < 1.0:
# tmp_H, tmp_W = int(H), int(W)
# H, W = tmp_W, tmp_H
if ori_W / ori_H > W / H:
frames = transforms.functional.resize(
frames,
size=[H, int(ori_W * H / ori_H)],
)
else:
frames = transforms.functional.resize(
frames,
size=[int(ori_H * W / ori_W), W],
)
resized_H, resized_W = frames.shape[2], frames.shape[3]
frames = frames.squeeze(0)
delta_H = resized_H - H
delta_W = resized_W - W
top, left = delta_H // 2, delta_W // 2
frames = transforms.functional.crop(frames, top=top, left=left, height=H, width=W)
return frames, resized_H, resized_W
@override
def preprocess(self, video_path: Path | None, image_path: Path | None, camera_pose_4x4, camera_intrinsics, use_precompute_video_latents=True):
if video_path is not None:
video, indices = preprocess_video_with_resize(
video_path, self.max_num_frames, self.height, self.width,
keep_aspect_ratio=self.keep_aspect_ratio,
use_precompute_video_latents=use_precompute_video_latents
)
if self.keep_aspect_ratio:
video, resized_H, resized_W = self._resize_for_rectangle_crop(video, self.height, self.width)
else:
resized_H, resized_W = video.shape[-2:]
camera_pose_4x4 = camera_pose_4x4[indices]
camera_intrinsics = camera_intrinsics.clone()
cur_H, cur_W = video.shape[-2:]
camera_intrinsics[0, 0] *= resized_W
camera_intrinsics[0, 2] *= cur_W
camera_intrinsics[1, 1] *= resized_H
camera_intrinsics[1, 2] *= cur_H
camera_intrinsics = camera_intrinsics.unsqueeze(0).repeat(camera_pose_4x4.shape[0], 1, 1) # f,3,3
else:
video = None
if image_path is not None and use_precompute_video_latents:
image = preprocess_image_with_resize(image_path, self.height, self.width, keep_aspect_ratio=self.keep_aspect_ratio)
if self.keep_aspect_ratio:
image, resized_H, resized_W = self._resize_for_rectangle_crop(image.unsqueeze(0), self.height, self.width)
elif not use_precompute_video_latents:
image = video[0, :, :, :].clone()
else:
image = None
return video, image, camera_pose_4x4, camera_intrinsics
@override
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
return torch.stack([self.__frame_transforms(f) for f in frames], dim=0)
@override
def image_transform(self, image: torch.Tensor) -> torch.Tensor:
return self.__image_transforms(image)
class I2VDatasetWithBuckets(BaseI2VDataset):
def __init__(
self,
video_resolution_buckets: List[Tuple[int, int, int]],
vae_temporal_compression_ratio: int,
vae_height_compression_ratio: int,
vae_width_compression_ratio: int,
*args,
**kwargs,
) -> None:
super().__init__(*args, **kwargs)
self.video_resolution_buckets = [
(
int(b[0] / vae_temporal_compression_ratio),
int(b[1] / vae_height_compression_ratio),
int(b[2] / vae_width_compression_ratio),
)
for b in video_resolution_buckets
]
self.__frame_transforms = transforms.Compose([transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)])
self.__image_transforms = self.__frame_transforms
@override
def preprocess(self, video_path: Path, image_path: Path) -> Tuple[torch.Tensor, torch.Tensor]:
video = preprocess_video_with_buckets(video_path, self.video_resolution_buckets)
image = preprocess_image_with_resize(image_path, video.shape[2], video.shape[3])
return video, image
@override
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
return torch.stack([self.__frame_transforms(f) for f in frames], dim=0)
@override
def image_transform(self, image: torch.Tensor) -> torch.Tensor:
return self.__image_transforms(image)
|