Spaces:
Runtime error
Runtime error
File size: 17,512 Bytes
e8bdafd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).parent.parent))
import importlib
import json
import os
from functools import partial
from pprint import pprint
from uuid import uuid4
import numpy as np
import torch
import torch.nn.functional as F
from diffusers import AutoencoderKLCogVideoX, CogVideoXDPMScheduler
from diffusers.models.embeddings import get_3d_rotary_pos_embed
from diffusers.utils.export_utils import export_to_video
from einops import rearrange, repeat
from pytorch_lightning import seed_everything
from torch import Tensor
from torchvision import transforms
from transformers import AutoTokenizer, T5EncoderModel
from torchcodec.decoders import VideoDecoder
def relative_pose(rt: Tensor, mode, ref_index) -> Tensor:
'''
:param rt: F,4,4
:param mode: left or right
:return:
'''
if mode == "left":
rt = rt[ref_index].inverse() @ rt
elif mode == "right":
rt = rt @ rt[ref_index].inverse()
return rt
def camera_pose_lerp(c2w: Tensor, target_frames: int):
weights = torch.linspace(0, c2w.size(0) - 1, target_frames, dtype=c2w.dtype)
left_indices = weights.floor().long()
right_indices = weights.ceil().long()
return torch.lerp(c2w[left_indices], c2w[right_indices], weights.unsqueeze(-1).unsqueeze(-1).frac())
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def _resize_for_rectangle_crop(frames, H, W):
'''
:param frames: C,F,H,W
:param image_size: H,W
:return: frames: C,F,crop_H,crop_W; camera_intrinsics: F,3,3
'''
ori_H, ori_W = frames.shape[-2:]
# if ori_W / ori_H < 1.0:
# tmp_H, tmp_W = int(H), int(W)
# H, W = tmp_W, tmp_H
if ori_W / ori_H > W / H:
frames = transforms.functional.resize(frames, size=[H, int(ori_W * H / ori_H)])
else:
frames = transforms.functional.resize(frames, size=[int(ori_H * W / ori_W), W])
resized_H, resized_W = frames.shape[2], frames.shape[3]
frames = frames.squeeze(0)
delta_H = resized_H - H
delta_W = resized_W - W
top, left = delta_H // 2, delta_W // 2
frames = transforms.functional.crop(frames, top=top, left=left, height=H, width=W)
return frames, resized_H, resized_W
def _resize(frames, H, W):
'''
:param frames: C,F,H,W
:param image_size: H,W
:return: frames: C,F,crop_H,crop_W; camera_intrinsics: F,3,3
'''
frames = transforms.functional.resize(frames, size=[H, W])
resized_H, resized_W = frames.shape[2], frames.shape[3]
frames = frames.squeeze(0)
return frames, resized_H, resized_W
class Image2Video:
def __init__(
self,
result_dir: str = "results",
model_meta_path: str = "models.json",
camera_pose_meta_path: str = "camera_poses.json",
save_fps: int = 16,
device: str = "cuda",
):
self.result_dir = result_dir
self.model_meta_file = model_meta_path
self.camera_pose_meta_path = camera_pose_meta_path
self.save_fps = save_fps
self.device = torch.device(device)
self.pipe = None
def init_model(self, model_name):
from models.camera_controller.cogvideox_with_controlnetxs import CogVideoXTransformer3DModel
from models.camera_controller.controlnetxs import ControlnetXs
with open(self.model_meta_file, "r", encoding="utf-8") as f:
model_metadata = json.load(f)[model_name]
pretrained_model_path = model_metadata["pretrained_model_path"]
controlnetxs_model_path = model_metadata["controlnetxs_model_path"]
self.transformer = CogVideoXTransformer3DModel.from_pretrained(pretrained_model_path, subfolder="transformer", torch_dtype=torch.bfloat16)
self.controlnetxs = ControlnetXs("models/camera_controller/CogVideoX1.5-5B-I2V", self.transformer.config)
self.controlnetxs.load_state_dict(torch.load(controlnetxs_model_path)['module'], strict=True)
self.controlnetxs.to(torch.bfloat16)
# self.controlnetxs.to(torch.float32)
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
self.text_encoder = T5EncoderModel.from_pretrained(pretrained_model_path, subfolder="text_encoder", torch_dtype=torch.bfloat16)
self.vae = AutoencoderKLCogVideoX.from_pretrained(pretrained_model_path, subfolder="vae", torch_dtype=torch.bfloat16)
self.vae_scale_factor_spatial = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.scheduler = CogVideoXDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
self.controlnetxs.eval()
self.text_encoder.eval()
self.vae.eval()
self.transformer.eval()
self.prepare_models()
def prepare_models(self) -> None:
if self.vae is not None:
self.vae.enable_slicing()
self.vae.enable_tiling()
if self.controlnetxs.vae_encoder is not None:
self.controlnetxs.vae_encoder.enable_slicing()
self.controlnetxs.vae_encoder.enable_tiling()
def init_pipe(self):
from models.camera_controller.pipeline_cogvideox_image2video import CogVideoXImageToVideoPipeline
self.pipe = CogVideoXImageToVideoPipeline(
tokenizer=self.tokenizer,
text_encoder=None,
vae=self.vae,
transformer=self.transformer,
scheduler=self.scheduler
)
self.pipe.scaling_flag = True
self.pipe.to(self.device)
def offload_cpu(self):
if hasattr(self, "transformer"):
self.transformer.cpu()
if hasattr(self, "controlnetxs"):
self.controlnetxs.cpu()
if hasattr(self, "text_encoder"):
self.text_encoder.cpu()
if hasattr(self, "vae"):
self.vae.cpu()
torch.cuda.empty_cache()
def prepare_rotary_positional_embeddings(
self,
height: int,
width: int,
num_frames: int,
transformer_config: dict,
vae_scale_factor_spatial: int,
device: torch.device,
) -> tuple[torch.Tensor, torch.Tensor]:
grid_height = height // (vae_scale_factor_spatial * transformer_config.patch_size)
grid_width = width // (vae_scale_factor_spatial * transformer_config.patch_size)
if transformer_config.patch_size_t is None:
base_num_frames = num_frames
else:
base_num_frames = (num_frames + transformer_config.patch_size_t - 1) // transformer_config.patch_size_t
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
embed_dim=transformer_config.attention_head_dim,
crops_coords=None,
grid_size=(grid_height, grid_width),
temporal_size=base_num_frames,
grid_type="slice",
max_size=(grid_height, grid_width),
device=device,
)
return freqs_cos, freqs_sin
def validation_step(self, input_kwargs: dict[str]) -> torch.Tensor:
"""
Return the input_kwargs that needs to be saved. For videos, the input_kwargs format is list[PIL],
and for images, the input_kwargs format is PIL
image: shape=(1,c,h,w), value in [0, 1]
"""
plucker_embedding = input_kwargs["plucker_embedding"]
image = input_kwargs["image"]
H, W = image.shape[-2:]
# camera
plucker_embedding = plucker_embedding.to(self.controlnetxs.vae_encoder.device, dtype=self.controlnetxs.vae_encoder.dtype) # [C=6, F, H, W]
latent_plucker_embedding_dist = self.controlnetxs.vae_encoder.encode(plucker_embedding).latent_dist # B,C=6,F,H,W --> B,128,(F-1)//4+1,H//4,W//4
latent_plucker_embedding = latent_plucker_embedding_dist.sample()
latent_plucker_embedding = latent_plucker_embedding.permute(0, 2, 1, 3, 4) # [B, C, F, H, W] to [B, F, C, H, W]
latent_plucker_embedding = latent_plucker_embedding.repeat(2, 1, 1, 1, 1) # cfg
patch_size_t = self.transformer.config.patch_size_t
if patch_size_t is not None:
ncopy = patch_size_t - latent_plucker_embedding.shape[1] % patch_size_t
if ncopy > 0:
# Copy the first frame ncopy times to match patch_size_t
first_frame = latent_plucker_embedding[:, :1, :, :, :] # Get first frame [B, F, C, H, W]
latent_plucker_embedding = torch.cat([first_frame.repeat(1, ncopy, 1, 1, 1), latent_plucker_embedding], dim=1)
if 'latent_scene_frames' in input_kwargs:
input_kwargs['latent_scene_frames'] = torch.cat([
input_kwargs['latent_scene_frames'][:, :1, :, :, :].repeat(1, ncopy, 1, 1, 1),
input_kwargs['latent_scene_frames']
],
dim=1
)
input_kwargs['latent_scene_mask'] = torch.cat([
input_kwargs['latent_scene_mask'][:, :1, :, :, :].repeat(1, ncopy, 1, 1, 1),
input_kwargs['latent_scene_mask']
],
dim=1
)
assert latent_plucker_embedding.shape[1] % patch_size_t == 0
num_latent_frames = latent_plucker_embedding.shape[1]
vae_scale_factor_spatial = 2 ** (len(self.vae.config.block_out_channels) - 1)
rotary_emb_for_controlnetxs = (
self.prepare_rotary_positional_embeddings(
height=H,
width=W,
num_frames=num_latent_frames,
transformer_config=self.controlnetxs.transformer.config,
vae_scale_factor_spatial=vae_scale_factor_spatial,
device=self.device,
)
if self.transformer.config.use_rotary_positional_embeddings
else None
)
self.init_pipe()
original_forward = self.pipe.transformer.forward
self.pipe.transformer.forward = partial(
self.pipe.transformer.forward,
controlnetxs=self.controlnetxs,
latent_plucker_embedding=latent_plucker_embedding,
image_rotary_emb_for_controlnetxs=rotary_emb_for_controlnetxs,
)
forward_kwargs = dict(
num_frames=input_kwargs["video_length"],
height=H,
width=W,
prompt_embeds=input_kwargs["prompt_embedding"],
negative_prompt_embeds=input_kwargs["negative_prompt_embedding"],
image=image.to(self.device).to_dense(),
num_inference_steps=input_kwargs['num_inference_steps'],
guidance_scale=input_kwargs['text_cfg'],
noise_shaping=input_kwargs['noise_shaping'],
noise_shaping_minimum_timesteps = input_kwargs['noise_shaping_minimum_timesteps'],
latent_scene_frames = input_kwargs.get('latent_scene_frames', None), # B,F,C,H,W
latent_scene_mask = input_kwargs.get('latent_scene_mask', None),
generator = input_kwargs['generator'],
)
video_generate = self.pipe(**forward_kwargs).frames[0]
self.pipe.transformer.forward = original_forward
return video_generate
def encode_text(self, prompt: str) -> torch.Tensor:
prompt_token_ids = self.tokenizer(
prompt,
padding="max_length",
max_length=self.transformer.config.max_text_seq_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
prompt_token_ids = prompt_token_ids.input_ids
prompt_embedding = self.text_encoder(prompt_token_ids.to(self.device))[0]
return prompt_embedding.to(torch.bfloat16).to(self.device)
def encode_video(self, video: torch.Tensor) -> torch.Tensor:
# shape of input video: [B, C, F, H, W]
video = video.to(self.vae.device, dtype=self.vae.dtype)
latent_dist = self.vae.encode(video).latent_dist
latent = latent_dist.sample() * self.vae.config.scaling_factor
return latent.to(torch.bfloat16).to(self.device)
@torch.inference_mode()
def get_image(
self,
model_name: str,
ref_img: np.ndarray,
prompt: str,
negative_prompt: str,
camera_pose_type: str,
preview_video: str = None,
steps: int = 25,
trace_extract_ratio: float = 1.0,
trace_scale_factor: float = 1.0,
camera_cfg: float = 1.0,
text_cfg: float = 6.0,
seed: int = 123,
noise_shaping: bool = False,
noise_shaping_minimum_timesteps: int = 800,
video_shape: tuple[int, int, int] = (81, 768, 1360),
resize_for_rectangle_crop: bool = True,
):
if self.pipe is None:
self.init_model(model_name)
video_length, self.sample_height, self.sample_width = video_shape
print(video_length, self.sample_height, self.sample_width)
seed_everything(seed)
input_kwargs = {
'video_length': video_length,
'camera_cfg': camera_cfg,
'num_inference_steps': steps,
'text_cfg': text_cfg,
'noise_shaping': noise_shaping,
'noise_shaping_minimum_timesteps': noise_shaping_minimum_timesteps,
'generator': torch.Generator(device=self.device).manual_seed(seed)
}
ref_img = rearrange(torch.from_numpy(ref_img), 'h w c -> c 1 h w')
if resize_for_rectangle_crop:
ref_img, resized_H, resized_W = _resize_for_rectangle_crop(
ref_img, self.sample_height, self.sample_width,
)
else:
ref_img, resized_H, resized_W = _resize(
ref_img, self.sample_height, self.sample_width,
)
ref_img = rearrange(ref_img / 255, "c 1 h w -> 1 c h w")
H, W = ref_img.shape[-2:]
input_kwargs["image"] = ref_img.to(self.device).to(torch.bfloat16)
with open(self.camera_pose_meta_path, "r", encoding="utf-8") as f:
camera_pose_file_path = json.load(f)[camera_pose_type]
camera_data = torch.from_numpy(np.loadtxt(camera_pose_file_path, comments="https")) # t, -1
fx = 0.5 * max(resized_H, resized_W)
fy = fx
cx = 0.5 * W
cy = 0.5 * H
intrinsics_matrix = torch.tensor([
[fx, 0, cx],
[0, fy, cy],
[0, 0, 1.0]
])
w2cs_3x4 = camera_data[:, 7:].reshape(-1, 3, 4) # [t, 3, 4]
dummy = torch.tensor([[[0, 0, 0, 1]]] * w2cs_3x4.shape[0]) # [t, 1, 4]
w2cs_4x4 = torch.cat([w2cs_3x4, dummy], dim=1) # [t, 4, 4]
c2ws_4x4 = w2cs_4x4.inverse() # [t, 4, 4]
c2ws_lerp_4x4 = camera_pose_lerp(c2ws_4x4, round(video_length / trace_extract_ratio))[: video_length]
from utils.camera_utils import get_camera_condition
plucker_embedding, relative_c2w_RT_4x4 = get_camera_condition(
H, W, intrinsics_matrix[None, None], c2ws_lerp_4x4[None], mode="c2w",
cond_frame_index=0, align_factor=trace_scale_factor
) # [B=1, C=6, F, H, W]
input_kwargs["plucker_embedding"] = plucker_embedding.to(self.device).to(torch.bfloat16)
uid = uuid4().fields[0]
if noise_shaping:
scene_frames = VideoDecoder(preview_video, device=str(self.device))[:]
scene_frames = rearrange(scene_frames / 255 * 2 - 1, "t c h w -> c t h w") # c,f,h,w, value in [-1, 1]
latent_scene_frames = self.encode_video(scene_frames.unsqueeze(0)) # b=1,c,f,h,w
input_kwargs['latent_scene_frames'] = latent_scene_frames.permute(0, 2, 1, 3, 4) # b=1,c,f,h,w --> b=1,f,c,h,w
from models.camera_controller.utils import apply_thresholded_conv
scene_mask = (scene_frames < 1).float().amax(0, keepdim=True) # c,f,h,w --> 1,f,h,w
scene_mask = apply_thresholded_conv(scene_mask, kernel_size=5, threshold=1.0) # 1,f,h,w
latent_scene_mask = torch.cat([
F.interpolate(scene_mask[:, :1].unsqueeze(1), (1, H // 8, W // 8), mode="trilinear", align_corners=True),
F.interpolate(scene_mask[:, 1:].unsqueeze(1), ((video_length - 1) // 4, H // 8, W // 8), mode="trilinear", align_corners=True)
], dim=2).bool()
input_kwargs['latent_scene_mask'] = latent_scene_mask.permute(0, 2, 1, 3, 4)
self.vae.cpu()
self.transformer.cpu()
self.controlnetxs.cpu()
torch.cuda.empty_cache()
self.text_encoder.to(self.device)
input_kwargs |= {
"prompt_embedding": self.encode_text(prompt),
"negative_prompt_embedding": self.encode_text(negative_prompt),
}
self.text_encoder.cpu()
torch.cuda.empty_cache()
self.vae.to(self.device)
self.transformer.to(self.device)
self.controlnetxs.to(self.device)
generated_video = self.validation_step(input_kwargs)
video_path = f"{self.result_dir}/{model_name}_{uid:08x}.mp4"
os.makedirs(self.result_dir, exist_ok=True)
export_to_video(generated_video, video_path, fps=self.save_fps)
torch.cuda.empty_cache()
return video_path
|