File size: 17,512 Bytes
e8bdafd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import sys
from pathlib import Path

sys.path.append(str(Path(__file__).parent.parent))

import importlib
import json
import os
from functools import partial
from pprint import pprint
from uuid import uuid4

import numpy as np
import torch
import torch.nn.functional as F
from diffusers import AutoencoderKLCogVideoX, CogVideoXDPMScheduler
from diffusers.models.embeddings import get_3d_rotary_pos_embed
from diffusers.utils.export_utils import export_to_video
from einops import rearrange, repeat
from pytorch_lightning import seed_everything
from torch import Tensor
from torchvision import transforms
from transformers import AutoTokenizer, T5EncoderModel
from torchcodec.decoders import VideoDecoder


def relative_pose(rt: Tensor, mode, ref_index) -> Tensor:
    '''
    :param rt: F,4,4
    :param mode: left or right
    :return:
    '''
    if mode == "left":
        rt = rt[ref_index].inverse() @ rt
    elif mode == "right":
        rt = rt @ rt[ref_index].inverse()
    return rt


def camera_pose_lerp(c2w: Tensor, target_frames: int):
    weights = torch.linspace(0, c2w.size(0) - 1, target_frames, dtype=c2w.dtype)
    left_indices = weights.floor().long()
    right_indices = weights.ceil().long()

    return torch.lerp(c2w[left_indices], c2w[right_indices], weights.unsqueeze(-1).unsqueeze(-1).frac())


def get_obj_from_str(string, reload=False):
    module, cls = string.rsplit(".", 1)
    if reload:
        module_imp = importlib.import_module(module)
        importlib.reload(module_imp)
    return getattr(importlib.import_module(module, package=None), cls)


def _resize_for_rectangle_crop(frames, H, W):
    '''
    :param frames: C,F,H,W
    :param image_size: H,W
    :return: frames: C,F,crop_H,crop_W;  camera_intrinsics: F,3,3
    '''
    ori_H, ori_W = frames.shape[-2:]

    # if ori_W / ori_H < 1.0:
    #     tmp_H, tmp_W = int(H), int(W)
    #     H, W = tmp_W, tmp_H

    if ori_W / ori_H > W / H:
        frames = transforms.functional.resize(frames, size=[H, int(ori_W * H / ori_H)])
    else:
        frames = transforms.functional.resize(frames, size=[int(ori_H * W / ori_W), W])

    resized_H, resized_W = frames.shape[2], frames.shape[3]
    frames = frames.squeeze(0)

    delta_H = resized_H - H
    delta_W = resized_W - W

    top, left = delta_H // 2, delta_W // 2
    frames = transforms.functional.crop(frames, top=top, left=left, height=H, width=W)

    return frames, resized_H, resized_W


def _resize(frames, H, W):
    '''
    :param frames: C,F,H,W
    :param image_size: H,W
    :return: frames: C,F,crop_H,crop_W;  camera_intrinsics: F,3,3
    '''
    frames = transforms.functional.resize(frames, size=[H, W])

    resized_H, resized_W = frames.shape[2], frames.shape[3]
    frames = frames.squeeze(0)

    return frames, resized_H, resized_W


class Image2Video:
    def __init__(
        self,
        result_dir: str = "results",
        model_meta_path: str = "models.json",
        camera_pose_meta_path: str = "camera_poses.json",
        save_fps: int = 16,
        device: str = "cuda",
    ):
        self.result_dir = result_dir
        self.model_meta_file = model_meta_path
        self.camera_pose_meta_path = camera_pose_meta_path
        self.save_fps = save_fps
        self.device = torch.device(device)
        self.pipe = None

    def init_model(self, model_name):
        from models.camera_controller.cogvideox_with_controlnetxs import CogVideoXTransformer3DModel
        from models.camera_controller.controlnetxs import ControlnetXs

        with open(self.model_meta_file, "r", encoding="utf-8") as f:
            model_metadata = json.load(f)[model_name]
        pretrained_model_path = model_metadata["pretrained_model_path"]
        controlnetxs_model_path = model_metadata["controlnetxs_model_path"]

        self.transformer = CogVideoXTransformer3DModel.from_pretrained(pretrained_model_path, subfolder="transformer", torch_dtype=torch.bfloat16)
        self.controlnetxs = ControlnetXs("models/camera_controller/CogVideoX1.5-5B-I2V", self.transformer.config)
        self.controlnetxs.load_state_dict(torch.load(controlnetxs_model_path)['module'], strict=True)
        self.controlnetxs.to(torch.bfloat16)
        # self.controlnetxs.to(torch.float32)
        self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
        self.text_encoder = T5EncoderModel.from_pretrained(pretrained_model_path, subfolder="text_encoder", torch_dtype=torch.bfloat16)
        self.vae = AutoencoderKLCogVideoX.from_pretrained(pretrained_model_path, subfolder="vae", torch_dtype=torch.bfloat16)
        self.vae_scale_factor_spatial = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.scheduler = CogVideoXDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")

        self.controlnetxs.eval()
        self.text_encoder.eval()
        self.vae.eval()
        self.transformer.eval()

        self.prepare_models()

    def prepare_models(self) -> None:
        if self.vae is not None:
            self.vae.enable_slicing()
            self.vae.enable_tiling()

        if self.controlnetxs.vae_encoder is not None:
            self.controlnetxs.vae_encoder.enable_slicing()
            self.controlnetxs.vae_encoder.enable_tiling()

    def init_pipe(self):
        from models.camera_controller.pipeline_cogvideox_image2video import CogVideoXImageToVideoPipeline

        self.pipe = CogVideoXImageToVideoPipeline(
            tokenizer=self.tokenizer,
            text_encoder=None,
            vae=self.vae,
            transformer=self.transformer,
            scheduler=self.scheduler
        )
        self.pipe.scaling_flag = True
        self.pipe.to(self.device)

    def offload_cpu(self):
        if hasattr(self, "transformer"):
            self.transformer.cpu()
        if hasattr(self, "controlnetxs"):
            self.controlnetxs.cpu()
        if hasattr(self, "text_encoder"):
            self.text_encoder.cpu()
        if hasattr(self, "vae"):
            self.vae.cpu()

        torch.cuda.empty_cache()

    def prepare_rotary_positional_embeddings(
            self,
            height: int,
            width: int,
            num_frames: int,
            transformer_config: dict,
            vae_scale_factor_spatial: int,
            device: torch.device,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        grid_height = height // (vae_scale_factor_spatial * transformer_config.patch_size)
        grid_width = width // (vae_scale_factor_spatial * transformer_config.patch_size)

        if transformer_config.patch_size_t is None:
            base_num_frames = num_frames
        else:
            base_num_frames = (num_frames + transformer_config.patch_size_t - 1) // transformer_config.patch_size_t

        freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
            embed_dim=transformer_config.attention_head_dim,
            crops_coords=None,
            grid_size=(grid_height, grid_width),
            temporal_size=base_num_frames,
            grid_type="slice",
            max_size=(grid_height, grid_width),
            device=device,
        )

        return freqs_cos, freqs_sin

    def validation_step(self, input_kwargs: dict[str]) -> torch.Tensor:
        """
        Return the input_kwargs that needs to be saved. For videos, the input_kwargs format is list[PIL],
        and for images, the input_kwargs format is PIL
        image: shape=(1,c,h,w),  value in [0, 1]
        """
        plucker_embedding = input_kwargs["plucker_embedding"]
        image = input_kwargs["image"]
        H, W = image.shape[-2:]

        # camera
        plucker_embedding = plucker_embedding.to(self.controlnetxs.vae_encoder.device, dtype=self.controlnetxs.vae_encoder.dtype)  # [C=6, F, H, W]
        latent_plucker_embedding_dist = self.controlnetxs.vae_encoder.encode(plucker_embedding).latent_dist  # B,C=6,F,H,W --> B,128,(F-1)//4+1,H//4,W//4
        latent_plucker_embedding = latent_plucker_embedding_dist.sample()
        latent_plucker_embedding = latent_plucker_embedding.permute(0, 2, 1, 3, 4)  # [B, C, F, H, W] to [B, F, C, H, W]
        latent_plucker_embedding = latent_plucker_embedding.repeat(2, 1, 1, 1, 1)  # cfg

        patch_size_t = self.transformer.config.patch_size_t
        if patch_size_t is not None:
            ncopy = patch_size_t - latent_plucker_embedding.shape[1] % patch_size_t

            if ncopy > 0:
                # Copy the first frame ncopy times to match patch_size_t
                first_frame = latent_plucker_embedding[:, :1, :, :, :]  # Get first frame [B, F, C, H, W]
                latent_plucker_embedding = torch.cat([first_frame.repeat(1, ncopy, 1, 1, 1), latent_plucker_embedding], dim=1)

                if 'latent_scene_frames' in input_kwargs:
                    input_kwargs['latent_scene_frames'] = torch.cat([
                            input_kwargs['latent_scene_frames'][:, :1, :, :, :].repeat(1, ncopy, 1, 1, 1),
                            input_kwargs['latent_scene_frames']
                        ],
                        dim=1
                    )

                    input_kwargs['latent_scene_mask'] = torch.cat([
                            input_kwargs['latent_scene_mask'][:, :1, :, :, :].repeat(1, ncopy, 1, 1, 1),
                            input_kwargs['latent_scene_mask']
                        ],
                        dim=1
                    )

            assert latent_plucker_embedding.shape[1] % patch_size_t == 0

        num_latent_frames = latent_plucker_embedding.shape[1]
        vae_scale_factor_spatial = 2 ** (len(self.vae.config.block_out_channels) - 1)
        rotary_emb_for_controlnetxs = (
            self.prepare_rotary_positional_embeddings(
                height=H,
                width=W,
                num_frames=num_latent_frames,
                transformer_config=self.controlnetxs.transformer.config,
                vae_scale_factor_spatial=vae_scale_factor_spatial,
                device=self.device,
            )
            if self.transformer.config.use_rotary_positional_embeddings
            else None
        )

        self.init_pipe()
        original_forward = self.pipe.transformer.forward
        self.pipe.transformer.forward = partial(
            self.pipe.transformer.forward,
            controlnetxs=self.controlnetxs,
            latent_plucker_embedding=latent_plucker_embedding,
            image_rotary_emb_for_controlnetxs=rotary_emb_for_controlnetxs,
        )

        forward_kwargs = dict(
            num_frames=input_kwargs["video_length"],
            height=H,
            width=W,
            prompt_embeds=input_kwargs["prompt_embedding"],
            negative_prompt_embeds=input_kwargs["negative_prompt_embedding"],
            image=image.to(self.device).to_dense(),
            num_inference_steps=input_kwargs['num_inference_steps'],
            guidance_scale=input_kwargs['text_cfg'],
            noise_shaping=input_kwargs['noise_shaping'],
            noise_shaping_minimum_timesteps = input_kwargs['noise_shaping_minimum_timesteps'],
            latent_scene_frames = input_kwargs.get('latent_scene_frames', None),      # B,F,C,H,W
            latent_scene_mask = input_kwargs.get('latent_scene_mask', None),
            generator = input_kwargs['generator'],
        )

        video_generate = self.pipe(**forward_kwargs).frames[0]
        self.pipe.transformer.forward = original_forward
        return video_generate

    def encode_text(self, prompt: str) -> torch.Tensor:
        prompt_token_ids = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.transformer.config.max_text_seq_length,
            truncation=True,
            add_special_tokens=True,
            return_tensors="pt",
        )
        prompt_token_ids = prompt_token_ids.input_ids
        prompt_embedding = self.text_encoder(prompt_token_ids.to(self.device))[0]
        return prompt_embedding.to(torch.bfloat16).to(self.device)

    def encode_video(self, video: torch.Tensor) -> torch.Tensor:
        # shape of input video: [B, C, F, H, W]
        video = video.to(self.vae.device, dtype=self.vae.dtype)
        latent_dist = self.vae.encode(video).latent_dist
        latent = latent_dist.sample() * self.vae.config.scaling_factor
        return latent.to(torch.bfloat16).to(self.device)

    @torch.inference_mode()
    def get_image(
        self,
        model_name: str,
        ref_img: np.ndarray,
        prompt: str,
        negative_prompt: str,
        camera_pose_type: str,
        preview_video: str = None,
        steps: int = 25,
        trace_extract_ratio: float = 1.0,
        trace_scale_factor: float = 1.0,
        camera_cfg: float = 1.0,
        text_cfg: float = 6.0,
        seed: int = 123,
        noise_shaping: bool = False,
        noise_shaping_minimum_timesteps: int = 800,
        video_shape: tuple[int, int, int] = (81, 768, 1360),
        resize_for_rectangle_crop: bool = True,
    ):
        if self.pipe is None:
            self.init_model(model_name)

        video_length, self.sample_height, self.sample_width = video_shape
        print(video_length, self.sample_height, self.sample_width)

        seed_everything(seed)
        input_kwargs = {
            'video_length': video_length,
            'camera_cfg': camera_cfg,
            'num_inference_steps': steps,
            'text_cfg': text_cfg,
            'noise_shaping': noise_shaping,
            'noise_shaping_minimum_timesteps': noise_shaping_minimum_timesteps,
            'generator': torch.Generator(device=self.device).manual_seed(seed)
        }

        ref_img = rearrange(torch.from_numpy(ref_img), 'h w c -> c 1 h w')
        if resize_for_rectangle_crop:
            ref_img, resized_H, resized_W = _resize_for_rectangle_crop(
                ref_img, self.sample_height, self.sample_width,
            )
        else:
            ref_img, resized_H, resized_W = _resize(
                ref_img, self.sample_height, self.sample_width,
            )
        ref_img = rearrange(ref_img / 255, "c 1 h w -> 1 c h w")
        H, W = ref_img.shape[-2:]

        input_kwargs["image"] = ref_img.to(self.device).to(torch.bfloat16)

        with open(self.camera_pose_meta_path, "r", encoding="utf-8") as f:
            camera_pose_file_path = json.load(f)[camera_pose_type]
        camera_data = torch.from_numpy(np.loadtxt(camera_pose_file_path, comments="https"))  # t, -1

        fx = 0.5 * max(resized_H, resized_W)
        fy = fx
        cx = 0.5 * W
        cy = 0.5 * H
        intrinsics_matrix = torch.tensor([
            [fx, 0, cx],
            [0, fy, cy],
            [0, 0, 1.0]
        ])

        w2cs_3x4 = camera_data[:, 7:].reshape(-1, 3, 4)  # [t, 3, 4]
        dummy = torch.tensor([[[0, 0, 0, 1]]] * w2cs_3x4.shape[0])  # [t, 1, 4]
        w2cs_4x4 = torch.cat([w2cs_3x4, dummy], dim=1)  # [t, 4, 4]
        c2ws_4x4 = w2cs_4x4.inverse()  # [t, 4, 4]
        c2ws_lerp_4x4 = camera_pose_lerp(c2ws_4x4, round(video_length / trace_extract_ratio))[: video_length]

        from utils.camera_utils import get_camera_condition
        plucker_embedding, relative_c2w_RT_4x4 = get_camera_condition(
            H, W, intrinsics_matrix[None, None], c2ws_lerp_4x4[None], mode="c2w",
            cond_frame_index=0, align_factor=trace_scale_factor
        )  # [B=1, C=6, F, H, W]

        input_kwargs["plucker_embedding"] = plucker_embedding.to(self.device).to(torch.bfloat16)

        uid = uuid4().fields[0]
        if noise_shaping:
            scene_frames = VideoDecoder(preview_video, device=str(self.device))[:]
            scene_frames = rearrange(scene_frames / 255 * 2 - 1, "t c h w -> c t h w")  # c,f,h,w, value in [-1, 1]
            latent_scene_frames = self.encode_video(scene_frames.unsqueeze(0))  # b=1,c,f,h,w
            input_kwargs['latent_scene_frames'] = latent_scene_frames.permute(0, 2, 1, 3, 4)    # b=1,c,f,h,w --> b=1,f,c,h,w

            from models.camera_controller.utils import apply_thresholded_conv
            scene_mask = (scene_frames < 1).float().amax(0, keepdim=True)  # c,f,h,w --> 1,f,h,w
            scene_mask = apply_thresholded_conv(scene_mask, kernel_size=5, threshold=1.0)  # 1,f,h,w
            latent_scene_mask = torch.cat([
                F.interpolate(scene_mask[:, :1].unsqueeze(1), (1, H // 8, W // 8), mode="trilinear", align_corners=True),
                F.interpolate(scene_mask[:, 1:].unsqueeze(1), ((video_length - 1) // 4, H // 8, W // 8), mode="trilinear", align_corners=True)
            ], dim=2).bool()
            input_kwargs['latent_scene_mask'] = latent_scene_mask.permute(0, 2, 1, 3, 4)

        self.vae.cpu()
        self.transformer.cpu()
        self.controlnetxs.cpu()
        torch.cuda.empty_cache()

        self.text_encoder.to(self.device)
        input_kwargs |= {
            "prompt_embedding": self.encode_text(prompt),
            "negative_prompt_embedding": self.encode_text(negative_prompt),
        }

        self.text_encoder.cpu()
        torch.cuda.empty_cache()

        self.vae.to(self.device)
        self.transformer.to(self.device)
        self.controlnetxs.to(self.device)

        generated_video = self.validation_step(input_kwargs)
        video_path = f"{self.result_dir}/{model_name}_{uid:08x}.mp4"
        os.makedirs(self.result_dir, exist_ok=True)
        export_to_video(generated_video, video_path, fps=self.save_fps)

        torch.cuda.empty_cache()

        return video_path