Spaces:
Runtime error
Runtime error
File size: 41,361 Bytes
e8bdafd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 |
import json
import math
import wandb
from accelerate.accelerator import Accelerator, DistributedType
from accelerate.utils import (
DistributedDataParallelKwargs,
InitProcessGroupKwargs,
ProjectConfiguration,
gather_object,
set_seed,
)
from diffusers.optimization import get_scheduler
from diffusers.utils.export_utils import export_to_video
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
from tqdm import tqdm
from functools import partial
from typing import Any, Dict, List, Tuple
import torch
from diffusers import (
AutoencoderKLCogVideoX,
CogVideoXDPMScheduler,
CogVideoXImageToVideoPipeline,
# CogVideoXTransformer3DModel,
)
from diffusers.models.embeddings import get_3d_rotary_pos_embed
from PIL import Image
from numpy import dtype
from transformers import AutoTokenizer, T5EncoderModel
from typing_extensions import override
from finetune.schemas import Components
from finetune.trainer import Trainer, _DTYPE_MAP
from finetune.utils import unwrap_model
from ..utils import register
import os
from finetune.trainer import logger
from finetune.datasets.i2v_camera_dataset import I2VDatasetWithResize
from finetune.utils import (
cast_training_params,
free_memory,
get_intermediate_ckpt_path,
get_latest_ckpt_path_to_resume_from,
get_memory_statistics,
get_optimizer,
string_to_filename,
unload_model,
unwrap_model,
)
from finetune.models.camera_controller.controlnetxs import ControlnetXs
from finetune.models.camera_controller.cogvideox_with_controlnetxs import CogVideoXTransformer3DModel
from diffusers.video_processor import VideoProcessor
from torch.utils.data import DataLoader, Dataset
from finetune.schemas import Args, Components, State
class CogVideoX1dot5I2VControlnetXsTrainer(Trainer):
UNLOAD_LIST = ["text_encoder"]
def __init__(self, args: Args) -> None:
super().__init__(args)
if not args.precompute and args.allow_switch_hw and self.accelerator.process_index % 2 == 0:
f, h, w = self.args.train_resolution
self.args.train_resolution = (f, w, h)
self.state.train_frames = args.train_resolution[0]
self.state.train_height = args.train_resolution[1]
self.state.train_width = args.train_resolution[2]
def get_training_dtype(self) -> torch.dtype:
if self.args.mixed_precision == "no":
return _DTYPE_MAP["fp32"]
elif self.args.mixed_precision == "fp16":
return _DTYPE_MAP["fp16"]
elif self.args.mixed_precision == "bf16":
return _DTYPE_MAP["bf16"]
else:
raise ValueError(f"Invalid mixed precision: {self.args.mixed_precision}")
@override
def load_components(self) -> Dict[str, Any]:
components = Components()
model_path = str(self.args.model_path)
components.pipeline_cls = CogVideoXImageToVideoPipeline
components.tokenizer = AutoTokenizer.from_pretrained(model_path, subfolder="tokenizer")
components.text_encoder = T5EncoderModel.from_pretrained(model_path, subfolder="text_encoder")
components.transformer = CogVideoXTransformer3DModel.from_pretrained(model_path, subfolder="transformer")
components.vae = AutoencoderKLCogVideoX.from_pretrained(model_path, subfolder="vae")
components.scheduler = CogVideoXDPMScheduler.from_pretrained(model_path, subfolder="scheduler")
components.controlnetxs = ControlnetXs("models/camera_controller/CogVideoX1.5-5B-I2V", components.transformer.config)
self.state.controlnetxs_transformer_config = components.controlnetxs.transformer.config
return components
@override
def prepare_models(self) -> None:
logger.info("Initializing models")
if self.components.vae is not None:
if self.args.enable_slicing:
self.components.vae.enable_slicing()
if self.args.enable_tiling:
self.components.vae.enable_tiling()
if self.components.controlnetxs.vae_encoder is not None:
if self.args.enable_slicing:
self.components.controlnetxs.vae_encoder.enable_slicing()
if self.args.enable_tiling:
self.components.controlnetxs.vae_encoder.enable_tiling()
self.state.transformer_config = self.components.transformer.config
@override
def prepare_dataset(self) -> None:
logger.info("Initializing dataset and dataloader")
if self.args.model_type == "i2v":
self.dataset = I2VDatasetWithResize(
**(self.args.model_dump()),
device=self.accelerator.device,
max_num_frames=self.state.train_frames,
height=self.state.train_height,
width=self.state.train_width,
trainer=self,
)
elif self.args.model_type == "t2v":
self.dataset = T2VDatasetWithResize(
**(self.args.model_dump()),
device=self.accelerator.device,
max_num_frames=self.state.train_frames,
height=self.state.train_height,
width=self.state.train_width,
trainer=self,
)
else:
raise ValueError(f"Invalid model type: {self.args.model_type}")
# Prepare VAE and text encoder for encoding
self.components.vae.requires_grad_(False)
self.components.text_encoder.requires_grad_(False)
self.components.vae = self.components.vae.to(self.accelerator.device, dtype=self.state.weight_dtype)
self.components.text_encoder = self.components.text_encoder.to(
self.accelerator.device, dtype=self.state.weight_dtype
)
# Precompute latent for video and prompt embedding
if self.args.precompute:
logger.info("Precomputing latent for video and prompt embedding ...")
tmp_data_loader = torch.utils.data.DataLoader(
self.dataset,
collate_fn=self.collate_fn,
batch_size=1,
num_workers=0,
pin_memory=self.args.pin_memory,
shuffle=True
)
tmp_data_loader = self.accelerator.prepare_data_loader(tmp_data_loader)
for _ in tqdm(tmp_data_loader):
...
self.accelerator.wait_for_everyone()
logger.info("Precomputing latent for video and prompt embedding ... Done")
return
unload_model(self.components.vae)
unload_model(self.components.text_encoder)
free_memory()
self.data_loader = torch.utils.data.DataLoader(
self.dataset,
collate_fn=self.collate_fn,
batch_size=self.args.batch_size,
num_workers=self.args.num_workers,
pin_memory=self.args.pin_memory,
shuffle=True,
)
@override
def initialize_pipeline(self) -> CogVideoXImageToVideoPipeline:
# self.components.transformer.set_controlnetxs_like_adapter(
# unwrap_model(self.accelerator, self.components.controlnetxs)
# )
pipe = CogVideoXImageToVideoPipeline(
tokenizer=self.components.tokenizer,
text_encoder=self.components.text_encoder,
vae=self.components.vae,
transformer=self.components.transformer,
scheduler=self.components.scheduler,
)
return pipe
def decode_video(self, latent: torch.Tensor, video_processor) -> torch.Tensor:
# shape of input video: [B, C,F//4, H//8, W//8]
vae = self.components.vae
latent = latent.to(vae.device, dtype=vae.dtype)
video = vae.decode(latent / vae.config.scaling_factor).sample
video = video_processor.postprocess_video(video=video, output_type="pil")
return video
@override
def encode_video(self, video: torch.Tensor) -> torch.Tensor:
# shape of input video: [B, C, F, H, W]
vae = self.components.vae
video = video.to(vae.device, dtype=vae.dtype)
latent_dist = vae.encode(video).latent_dist
latent = latent_dist.sample() * vae.config.scaling_factor
return latent
@override
def encode_text(self, prompt: str) -> torch.Tensor:
prompt_token_ids = self.components.tokenizer(
prompt,
padding="max_length",
max_length=self.state.transformer_config.max_text_seq_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
prompt_token_ids = prompt_token_ids.input_ids
prompt_embedding = self.components.text_encoder(prompt_token_ids.to(self.accelerator.device))[0]
return prompt_embedding
@override
def collate_fn(self, samples: List[Dict[str, Any]]) -> Dict[str, Any]:
ret = {
"encoded_videos": [], "prompt_embeddings": [], "images": [], "plucker_embeddings": [], "prompts": [], "videos": []
}
for sample in samples:
encoded_video = sample["encoded_video"]
prompt_embedding = sample["prompt_embedding"]
image = sample["image"]
plucker_embedding = sample["plucker_embedding"]
video = sample["video"]
prompt = sample["prompt"]
ret["encoded_videos"].append(encoded_video)
ret["prompt_embeddings"].append(prompt_embedding)
if not self.args.precompute:
ret["plucker_embeddings"].append(plucker_embedding)
ret["images"].append(image)
ret["videos"].append(video)
ret["prompts"].append(prompt)
ret["encoded_videos"] = torch.stack(ret["encoded_videos"])
ret["prompt_embeddings"] = torch.stack(ret["prompt_embeddings"])
ret["images"] = torch.stack(ret["images"])
if not self.args.precompute:
ret["plucker_embeddings"] = torch.stack(ret["plucker_embeddings"])
ret["videos"] = torch.stack(ret["videos"])
return ret
@override
def prepare_trainable_parameters(self):
logger.info("Initializing trainable parameters")
# For mixed precision training we cast all non-trainable weights to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = self.state.weight_dtype
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
# due to pytorch#99272, MPS does not yet support bfloat16.
raise ValueError(
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
)
# For LoRA, we freeze all the parameters
# For SFT, we train all the parameters in transformer model
for attr_name, component in vars(self.components).items():
if hasattr(component, "requires_grad_"):
if self.args.training_type == "sft" and attr_name == "transformer":
component.requires_grad_(True)
else:
component.requires_grad_(False)
if self.args.training_type == "lora":
transformer_lora_config = LoraConfig(
r=self.args.rank,
lora_alpha=self.args.lora_alpha,
init_lora_weights=True,
target_modules=self.args.target_modules,
)
self.components.transformer.add_adapter(transformer_lora_config)
self._prepare_saving_loading_hooks(transformer_lora_config)
# Load components needed for training to GPU (except transformer), and cast them to the specified data type
ignore_list = ["controlnetxs"] + self.UNLOAD_LIST
self._move_components_to_device(dtype=weight_dtype, ignore_list=ignore_list)
if self.args.gradient_checkpointing:
self.components.transformer.enable_gradient_checkpointing()
self.components.controlnetxs.enable_gradient_checkpointing()
self.components.controlnetxs.train()
self.components.controlnetxs.requires_grad_(True)
# self.components.controlnetxs.set_main_transformer(self.components.transformer)
@override
def prepare_optimizer(self) -> None:
logger.info("Initializing optimizer and lr scheduler")
# Make sure the trainable params are in float32
cast_training_params([self.components.controlnetxs], dtype=torch.float32)
# For LoRA, we only want to train the LoRA weights
# For SFT, we want to train all the parameters
# for idx, (n, p) in enumerate(self.components.controlnetxs.named_parameters()):
# if p.requires_grad:
# print(idx, n)
trainable_parameters = list(filter(lambda p: p.requires_grad, self.components.controlnetxs.parameters()))
trainable_parameters_with_lr = {
"params": trainable_parameters,
"lr": self.args.learning_rate,
}
params_to_optimize = [trainable_parameters_with_lr]
self.state.num_trainable_parameters = sum(p.numel() for p in trainable_parameters)
use_deepspeed_opt = (
self.accelerator.state.deepspeed_plugin is not None
and "optimizer" in self.accelerator.state.deepspeed_plugin.deepspeed_config
)
optimizer = get_optimizer(
params_to_optimize=params_to_optimize,
optimizer_name=self.args.optimizer,
learning_rate=self.args.learning_rate,
beta1=self.args.beta1,
beta2=self.args.beta2,
beta3=self.args.beta3,
epsilon=self.args.epsilon,
weight_decay=self.args.weight_decay,
use_deepspeed=use_deepspeed_opt,
)
num_update_steps_per_epoch = math.ceil(len(self.data_loader) / self.args.gradient_accumulation_steps)
if self.args.train_steps is None:
self.args.train_steps = self.args.train_epochs * num_update_steps_per_epoch
self.state.overwrote_max_train_steps = True
use_deepspeed_lr_scheduler = (
self.accelerator.state.deepspeed_plugin is not None
and "scheduler" in self.accelerator.state.deepspeed_plugin.deepspeed_config
)
total_training_steps = self.args.train_steps
num_warmup_steps = self.args.lr_warmup_steps
if use_deepspeed_lr_scheduler:
from accelerate.utils import DummyScheduler
lr_scheduler = DummyScheduler(
name=self.args.lr_scheduler,
optimizer=optimizer,
total_num_steps=total_training_steps,
num_warmup_steps=num_warmup_steps,
)
else:
lr_scheduler = get_scheduler(
name=self.args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=total_training_steps,
num_cycles=self.args.lr_num_cycles,
power=self.args.lr_power,
)
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
@override
def prepare_for_training(self) -> None:
self.components.controlnetxs, self.optimizer, self.data_loader, self.lr_scheduler = self.accelerator.prepare(
self.components.controlnetxs, self.optimizer, self.data_loader, self.lr_scheduler
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(self.data_loader) / self.args.gradient_accumulation_steps)
if self.state.overwrote_max_train_steps:
self.args.train_steps = self.args.train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
self.args.train_epochs = math.ceil(self.args.train_steps / num_update_steps_per_epoch)
self.state.num_update_steps_per_epoch = num_update_steps_per_epoch
@override
def train(self) -> None:
logger.info("Starting training")
memory_statistics = get_memory_statistics()
logger.info(f"Memory before training start: {json.dumps(memory_statistics, indent=4)}")
self.state.total_batch_size_count = (
self.args.batch_size * self.accelerator.num_processes * self.args.gradient_accumulation_steps
)
info = {
"trainable parameters": self.state.num_trainable_parameters,
"total samples": len(self.dataset),
"train epochs": self.args.train_epochs,
"train steps": self.args.train_steps,
"batches per device": self.args.batch_size,
"total batches observed per epoch": len(self.data_loader),
"train batch size total count": self.state.total_batch_size_count,
"gradient accumulation steps": self.args.gradient_accumulation_steps,
}
logger.info(f"Training configuration: {json.dumps(info, indent=4)}")
global_step = 0
first_epoch = 0
initial_global_step = 0
# Potentially load in the weights and states from a previous save
(
resume_from_checkpoint_path,
initial_global_step,
global_step,
first_epoch,
) = get_latest_ckpt_path_to_resume_from(
resume_from_checkpoint=self.args.resume_from_checkpoint,
num_update_steps_per_epoch=self.state.num_update_steps_per_epoch,
)
if resume_from_checkpoint_path is not None:
self.accelerator.load_state(resume_from_checkpoint_path)
progress_bar = tqdm(
range(0, self.args.train_steps),
initial=initial_global_step,
desc="Training steps",
disable=not self.accelerator.is_local_main_process,
)
accelerator = self.accelerator
generator = torch.Generator(device=accelerator.device)
if self.args.seed is not None:
generator = generator.manual_seed(self.args.seed)
self.state.generator = generator
free_memory()
for epoch in range(first_epoch, self.args.train_epochs):
logger.debug(f"Starting epoch ({epoch + 1}/{self.args.train_epochs})")
self.components.controlnetxs.train()
models_to_accumulate = [self.components.controlnetxs]
for step, batch in enumerate(self.data_loader):
logger.debug(f"Starting step {step + 1}")
logs = {}
with accelerator.accumulate(models_to_accumulate):
# These weighting schemes use a uniform timestep sampling and instead post-weight the loss
loss, loss_log = self.compute_loss(batch)
accelerator.backward(loss)
if accelerator.sync_gradients:
if accelerator.distributed_type == DistributedType.DEEPSPEED:
grad_norm = self.components.controlnetxs.get_global_grad_norm()
# In some cases the grad norm may not return a float
if torch.is_tensor(grad_norm):
grad_norm = grad_norm.item()
else:
grad_norm = accelerator.clip_grad_norm_(
self.components.controlnetxs.parameters(), self.args.max_grad_norm
)
if torch.is_tensor(grad_norm):
grad_norm = grad_norm.item()
logs["grad_norm"] = grad_norm
# import ipdb
# ipdb.set_trace()
self.optimizer.step()
self.lr_scheduler.step()
self.optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
# print('0-0', self.components.controlnetxs.transformer.patch_embed.proj.weight.data[0][:5])
# print('0-1', self.components.controlnetxs.transformer.patch_embed.proj.weight.grad)
# print('1', unwrap_model(self.accelerator, self.components.controlnetxs).transformer.patch_embed.proj.weight.data[0][:5])
# print('1', unwrap_model(self.accelerator, self.components.controlnetxs).transformer.patch_embed.proj.weight.grad)
progress_bar.update(1)
global_step += 1
self._maybe_save_checkpoint(global_step)
for key, value in loss_log.items():
logs[key] = value.item()
try:
logs["lr"] = self.lr_scheduler.get_last_lr()[0]
progress_bar.set_postfix(logs)
except:
pass
# Maybe run validation
should_run_validation = self.args.do_validation and global_step % self.args.validation_steps == 0
if should_run_validation:
del loss
free_memory()
try:
self.validate(global_step)
except:
print('fail to validate')
accelerator.log(logs, step=global_step)
if global_step >= self.args.train_steps:
break
memory_statistics = get_memory_statistics()
logger.info(f"Memory after epoch {epoch + 1}: {json.dumps(memory_statistics, indent=4)}")
accelerator.wait_for_everyone()
self._maybe_save_checkpoint(global_step, must_save=True)
if self.args.do_validation:
free_memory()
self.validate(global_step)
del self.components
free_memory()
memory_statistics = get_memory_statistics()
logger.info(f"Memory after training end: {json.dumps(memory_statistics, indent=4)}")
accelerator.end_training()
@override
def compute_loss(self, batch) -> torch.Tensor:
prompt_embedding = batch["prompt_embeddings"]
latent = batch["encoded_videos"]
video = batch["videos"]
prompt = batch["prompts"]
images = batch["images"]
plucker_embedding = batch["plucker_embeddings"] # B, C, F, H, W
self.state.image = images[0] # C, H, W; value in [0, 255]
self.state.video = video[0] # F, C, H, W; value in [-1, 1]
self.state.prompt_embedding = prompt_embedding[0] # L, D
self.state.prompt = prompt[0]
self.state.plucker_embedding = plucker_embedding[0] # C=6, F, H, W
# Shape of prompt_embedding: [B, seq_len, hidden_size]
# Shape of latent: [B, C, F, H, W]
# Shape of images: [B, C, H, W]
patch_size_t = self.state.transformer_config.patch_size_t
if patch_size_t is not None:
ncopy = latent.shape[2] % patch_size_t
# Copy the first frame ncopy times to match patch_size_t
first_frame = latent[:, :, :1, :, :] # Get first frame [B, C, 1, H, W]
latent = torch.cat([first_frame.repeat(1, 1, ncopy, 1, 1), latent], dim=2)
assert latent.shape[2] % patch_size_t == 0
batch_size, num_channels, num_frames, height, width = latent.shape
# Get prompt embeddings
_, seq_len, _ = prompt_embedding.shape
prompt_embedding = prompt_embedding.view(batch_size, seq_len, -1).to(dtype=latent.dtype)
# Add frame dimension to images [B,C,H,W] -> [B,C,F,H,W]
images = images.unsqueeze(2)
# Add noise to images
image_noise_sigma = torch.normal(mean=-3.0, std=0.5, size=(1,), device=self.accelerator.device)
image_noise_sigma = torch.exp(image_noise_sigma).to(dtype=images.dtype)
noisy_images = images + torch.randn_like(images) * image_noise_sigma[:, None, None, None, None]
image_latent_dist = self.components.vae.encode(noisy_images.to(dtype=self.components.vae.dtype)).latent_dist
image_latents = image_latent_dist.sample() * self.components.vae.config.scaling_factor
# Sample a random timestep for each sample
timesteps = torch.randint(
0, self.components.scheduler.config.num_train_timesteps, (batch_size,), device=self.accelerator.device
)
if self.args.time_sampling_type == "truncated_normal":
time_sampling_dict = {
'mean': self.args.time_sampling_mean,
'std': self.args.time_sampling_std,
'a': self.args.camera_condition_start_timestep / self.components.scheduler.config.num_train_timesteps,
'b': 1.0,
}
timesteps = torch.nn.init.trunc_normal_(
torch.empty(batch_size, device=self.accelerator.device), **time_sampling_dict
) * self.components.scheduler.config.num_train_timesteps
timesteps = timesteps.long()
self.state.timestep = timesteps[0].item()
# from [B, C, F, H, W] to [B, F, C, H, W]
latent = latent.permute(0, 2, 1, 3, 4)
image_latents = image_latents.permute(0, 2, 1, 3, 4)
assert (latent.shape[0], *latent.shape[2:]) == (image_latents.shape[0], *image_latents.shape[2:])
# Padding image_latents to the same frame number as latent
padding_shape = (latent.shape[0], latent.shape[1] - 1, *latent.shape[2:])
latent_padding = image_latents.new_zeros(padding_shape)
image_latents = torch.cat([image_latents, latent_padding], dim=1)
# Add noise to latent
noise = torch.randn_like(latent)
latent_noisy = self.components.scheduler.add_noise(latent, noise, timesteps)
# Concatenate latent and image_latents in the channel dimension
latent_img_noisy = torch.cat([latent_noisy, image_latents], dim=2)
# Prepare rotary embeds
vae_scale_factor_spatial = 2 ** (len(self.components.vae.config.block_out_channels) - 1)
transformer_config = self.state.transformer_config
controlnetxs_transformer_config = self.state.controlnetxs_transformer_config
rotary_emb = (
self.prepare_rotary_positional_embeddings(
height=height * vae_scale_factor_spatial,
width=width * vae_scale_factor_spatial,
num_frames=num_frames,
transformer_config=transformer_config,
vae_scale_factor_spatial=vae_scale_factor_spatial,
device=self.accelerator.device,
)
if transformer_config.use_rotary_positional_embeddings
else None
)
rotary_emb_for_controlnetxs = (
self.prepare_rotary_positional_embeddings(
height=height * vae_scale_factor_spatial,
width=width * vae_scale_factor_spatial,
num_frames=num_frames,
transformer_config=controlnetxs_transformer_config,
vae_scale_factor_spatial=vae_scale_factor_spatial,
device=self.accelerator.device,
)
if transformer_config.use_rotary_positional_embeddings
else None
)
# Predict noise
ofs_emb = (
None if self.state.transformer_config.ofs_embed_dim is None else latent.new_full((1,), fill_value=2.0)
)
if self.args.enable_gft_training:
camera_condition_gft_beta = torch.ones(timesteps.shape[0]).uniform_(0.2, 1.0).to(self.accelerator.device) # [0.2, 1.0]
else:
camera_condition_gft_beta = torch.ones(timesteps.shape[0]).to(self.accelerator.device) # [1.0, 1.0]
predicted_results = self.components.controlnetxs(
hidden_states=latent_img_noisy,
encoder_hidden_states=prompt_embedding,
timestep=timesteps,
ofs=ofs_emb,
image_rotary_emb=rotary_emb,
image_rotary_emb_for_controlnetxs=rotary_emb_for_controlnetxs,
return_dict=True,
plucker_embedding=plucker_embedding, # B,F,C,H,W
main_transformer=self.components.transformer,
camera_condition_gft_beta = camera_condition_gft_beta,
camera_condition_dropout=0.1 if self.args.enable_gft_training else 0.0
)
predicted_noise = predicted_results['sample']
if self.args.enable_gft_training:
with torch.inference_mode():
uncond_predicted_results = self.components.controlnetxs(
hidden_states=latent_img_noisy,
encoder_hidden_states=prompt_embedding,
timestep=timesteps,
ofs=ofs_emb,
image_rotary_emb=rotary_emb,
image_rotary_emb_for_controlnetxs=rotary_emb_for_controlnetxs,
return_dict=True,
plucker_embedding=plucker_embedding, # B,F,C,H,W
main_transformer=self.components.transformer,
camera_condition_gft_beta=torch.ones_like(camera_condition_gft_beta),
camera_condition_dropout=1.0
)
uncond_predicted_noise = uncond_predicted_results['sample']
predicted_noise = camera_condition_gft_beta[:, None, None, None, None] * predicted_noise \
+ (1-camera_condition_gft_beta[:, None, None, None, None]) * uncond_predicted_noise
# Denoise
latent_pred = self.components.scheduler.get_velocity(predicted_noise, latent_noisy, timesteps)
alphas_cumprod = self.components.scheduler.alphas_cumprod[timesteps]
weights = 1 / (1 - alphas_cumprod)
while len(weights.shape) < len(latent_pred.shape):
weights = weights.unsqueeze(-1)
loss = torch.mean((weights * (latent_pred - latent) ** 2).reshape(batch_size, -1), dim=1)
loss = loss.mean()
loss_log = {
'diffusion_loss': loss.detach(),
}
return loss, loss_log
@override
def prepare_for_validation(self):
pass
@override
def validate(self, step: int) -> None:
logger.info("Starting validation")
accelerator = self.accelerator
self.components.controlnetxs.eval()
torch.set_grad_enabled(False)
memory_statistics = get_memory_statistics()
logger.info(f"Memory before validation start: {json.dumps(memory_statistics, indent=4)}")
##### Initialize pipeline #####
pipe = self.initialize_pipeline()
if self.state.using_deepspeed:
# Can't using model_cpu_offload in deepspeed,
# so we need to move all components in pipe to device
# pipe.to(self.accelerator.device, dtype=self.state.weight_dtype)
self._move_components_to_device(dtype=self.state.weight_dtype, ignore_list=["controlnetxs", "transformer"])
else:
# if not using deepspeed, use model_cpu_offload to further reduce memory usage
# Or use pipe.enable_sequential_cpu_offload() to further reduce memory usage
pipe.enable_model_cpu_offload(device=self.accelerator.device)
# Convert all model weights to training dtype
# Note, this will change LoRA weights in self.components.transformer to training dtype, rather than keep them in fp32
pipe = pipe.to(dtype=self.state.weight_dtype)
#################################
all_processes_artifacts = []
image = self.state.image # C, H, W; value in [0, 255]
video = self.state.video # F, C, H, W; value in [-1, 1]
prompt_embeds = self.state.prompt_embedding # L, D
prompt = self.state.prompt
plucker_embedding = self.state.plucker_embedding # C=6, F, H, W
if image is not None:
# Convert image tensor (C, H, W) to PIL images
image = ((image * 0.5 + 0.5) * 255).round().clamp(0, 255).to(torch.uint8)
image = image.permute(1, 2, 0).cpu().numpy()
image = Image.fromarray(image)
if video is not None:
# Convert video tensor (F, C, H, W) to list of PIL images
video = ((video * 0.5 + 0.5) * 255).round().clamp(0, 255).to(torch.uint8)
video = [Image.fromarray(frame.permute(1, 2, 0).cpu().numpy()) for frame in video]
validation_artifacts = self.validation_step({"prompt_embeds": prompt_embeds, "image": image, "plucker_embedding": plucker_embedding}, pipe)
prompt_filename = string_to_filename(prompt)[:25]
artifacts = {
"conditioned_image": {"type": "image", "value": image},
"gt_video": {"type": "video", "value": video},
}
for i, (artifact_type, artifact_value) in enumerate(validation_artifacts):
artifacts.update({f"generated_video_{i}": {"type": artifact_type, "value": artifact_value}})
for key, value in list(artifacts.items()):
artifact_type = value["type"]
artifact_value = value["value"]
if artifact_type not in ["image", "video"] or artifact_value is None:
continue
extension = "png" if artifact_type == "image" else "mp4"
filename = f"validation-{key}-{step}-{accelerator.process_index}-{prompt_filename}.{extension}"
validation_path = self.args.output_dir / "validation_res"
validation_path.mkdir(parents=True, exist_ok=True)
filename = str(validation_path / filename)
if artifact_type == "image":
logger.debug(f"Saving image to {filename}")
artifact_value.save(filename)
artifact_value = wandb.Image(filename)
elif artifact_type == "video":
logger.debug(f"Saving video to {filename}")
export_to_video(artifact_value, filename, fps=self.args.gen_fps)
artifact_value = wandb.Video(filename, caption=f"{key}_{prompt}")
all_processes_artifacts.append(artifact_value)
all_artifacts = gather_object(all_processes_artifacts)
if accelerator.is_main_process:
tracker_key = "validation"
for tracker in accelerator.trackers:
if tracker.name == "wandb":
image_artifacts = [artifact for artifact in all_artifacts if isinstance(artifact, wandb.Image)]
video_artifacts = [artifact for artifact in all_artifacts if isinstance(artifact, wandb.Video)]
tracker.log(
{
tracker_key: {"images": image_artifacts, "videos": video_artifacts},
},
step=step,
)
########## Clean up ##########
if self.state.using_deepspeed:
del pipe
# Unload models except those needed for training
self._move_components_to_cpu(unload_list=self.UNLOAD_LIST)
else:
pipe.remove_all_hooks()
del pipe
# Load models except those not needed for training
self._move_components_to_device(dtype=self.state.weight_dtype, ignore_list=self.UNLOAD_LIST)
self.components.controlnetxs.to(self.accelerator.device, dtype=self.state.weight_dtype)
# Change trainable weights back to fp32 to keep with dtype after prepare the model
cast_training_params([self.components.controlnetxs], dtype=torch.float32)
free_memory()
accelerator.wait_for_everyone()
################################
memory_statistics = get_memory_statistics()
logger.info(f"Memory after validation end: {json.dumps(memory_statistics, indent=4)}")
torch.cuda.reset_peak_memory_stats(accelerator.device)
torch.set_grad_enabled(True)
self.components.controlnetxs.train()
@override
def validation_step(
self, eval_data: Dict[str, Any], pipe: CogVideoXImageToVideoPipeline
) -> List[Tuple[str, Image.Image | List[Image.Image]]]:
"""
Return the data that needs to be saved. For videos, the data format is List[PIL],
and for images, the data format is PIL
"""
prompt_embeds, image, plucker_embedding = eval_data["prompt_embeds"], eval_data["image"], eval_data["plucker_embedding"]
# camera
plucker_embedding = plucker_embedding.to(self.components.controlnetxs.vae_encoder.device, dtype=self.components.controlnetxs.vae_encoder.dtype) # [C=6, F, H, W]
latent_plucker_embedding_dist = self.components.controlnetxs.vae_encoder.encode(plucker_embedding.unsqueeze(0)).latent_dist # B,C=6,F,H,W --> B,128,F//4,H//4,W//4
latent_plucker_embedding = latent_plucker_embedding_dist.sample()
patch_size_t = self.components.transformer.config.patch_size_t
if patch_size_t is not None:
ncopy = latent_plucker_embedding.shape[2] % patch_size_t
# Copy the first frame ncopy times to match patch_size_t
first_frame = latent_plucker_embedding[:, :, :1, :, :] # Get first frame [B, C, 1, H, W]
latent_plucker_embedding = torch.cat([first_frame.repeat(1, 1, ncopy, 1, 1), latent_plucker_embedding], dim=2)
assert latent_plucker_embedding.shape[2] % patch_size_t == 0
latent_plucker_embedding = latent_plucker_embedding.permute(0, 2, 1, 3, 4) # [B, C, F, H, W] to [B, F, C, H, W]
latent_plucker_embedding = latent_plucker_embedding.repeat(2,1,1,1,1) # cfg
num_frames = latent_plucker_embedding.shape[1]
vae_scale_factor_spatial = 2 ** (len(self.components.vae.config.block_out_channels) - 1)
transformer_config = self.state.transformer_config
controlnetxs_transformer_config = self.state.controlnetxs_transformer_config
rotary_emb_for_controlnetxs = (
self.prepare_rotary_positional_embeddings(
height=latent_plucker_embedding.shape[-2] * vae_scale_factor_spatial,
width=latent_plucker_embedding.shape[-1] * vae_scale_factor_spatial,
num_frames=num_frames,
transformer_config=controlnetxs_transformer_config,
vae_scale_factor_spatial=vae_scale_factor_spatial,
device=self.accelerator.device,
)
if transformer_config.use_rotary_positional_embeddings
else None
)
original_forward = pipe.transformer.forward
if self.args.enable_gft_training:
camera_condition_gft_beta = torch.ones((latent_plucker_embedding.shape[0], ), device=self.accelerator.device) * 0.4
else:
camera_condition_gft_beta = torch.ones((latent_plucker_embedding.shape[0],), device=self.accelerator.device)
pipe.transformer.forward = partial(
pipe.transformer.forward,
controlnetxs=unwrap_model(self.accelerator, self.components.controlnetxs),
latent_plucker_embedding=latent_plucker_embedding,
image_rotary_emb_for_controlnetxs=rotary_emb_for_controlnetxs,
camera_condition_gft_beta=camera_condition_gft_beta,
camera_condition_start_timestep=self.args.camera_condition_start_timestep
)
#########
video_generate = pipe(
num_frames=self.state.train_frames,
height=self.state.train_height,
width=self.state.train_width,
prompt_embeds=prompt_embeds.unsqueeze(0),
image=image,
generator=self.state.generator,
num_inference_steps=25
).frames[0]
pipe.transformer.forward = original_forward
return [("video", video_generate)]
@override
def _prepare_saving_loading_hooks(self):
pass
def prepare_rotary_positional_embeddings(
self,
height: int,
width: int,
num_frames: int,
transformer_config: Dict,
vae_scale_factor_spatial: int,
device: torch.device,
) -> Tuple[torch.Tensor, torch.Tensor]:
grid_height = height // (vae_scale_factor_spatial * transformer_config.patch_size)
grid_width = width // (vae_scale_factor_spatial * transformer_config.patch_size)
if transformer_config.patch_size_t is None:
base_num_frames = num_frames
else:
base_num_frames = (num_frames + transformer_config.patch_size_t - 1) // transformer_config.patch_size_t
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
embed_dim=transformer_config.attention_head_dim,
crops_coords=None,
grid_size=(grid_height, grid_width),
temporal_size=base_num_frames,
grid_type="slice",
max_size=(grid_height, grid_width),
device=device,
)
return freqs_cos, freqs_sin
register("cogvideox1.5-i2v", "controlnetxs", CogVideoX1dot5I2VControlnetXsTrainer)
|