File size: 41,361 Bytes
e8bdafd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
import json
import math
import wandb
from accelerate.accelerator import Accelerator, DistributedType
from accelerate.utils import (
    DistributedDataParallelKwargs,
    InitProcessGroupKwargs,
    ProjectConfiguration,
    gather_object,
    set_seed,
)
from diffusers.optimization import get_scheduler
from diffusers.utils.export_utils import export_to_video
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
from tqdm import tqdm
from functools import partial


from typing import Any, Dict, List, Tuple

import torch
from diffusers import (
    AutoencoderKLCogVideoX,
    CogVideoXDPMScheduler,
    CogVideoXImageToVideoPipeline,
    # CogVideoXTransformer3DModel,
)
from diffusers.models.embeddings import get_3d_rotary_pos_embed
from PIL import Image
from numpy import dtype
from transformers import AutoTokenizer, T5EncoderModel
from typing_extensions import override

from finetune.schemas import Components
from finetune.trainer import Trainer, _DTYPE_MAP
from finetune.utils import unwrap_model

from ..utils import register
import os

from finetune.trainer import logger
from finetune.datasets.i2v_camera_dataset import I2VDatasetWithResize
from finetune.utils import (
    cast_training_params,
    free_memory,
    get_intermediate_ckpt_path,
    get_latest_ckpt_path_to_resume_from,
    get_memory_statistics,
    get_optimizer,
    string_to_filename,
    unload_model,
    unwrap_model,
)
from finetune.models.camera_controller.controlnetxs import ControlnetXs
from finetune.models.camera_controller.cogvideox_with_controlnetxs import CogVideoXTransformer3DModel
from diffusers.video_processor import VideoProcessor
from torch.utils.data import DataLoader, Dataset
from finetune.schemas import Args, Components, State



class CogVideoX1dot5I2VControlnetXsTrainer(Trainer):
    UNLOAD_LIST = ["text_encoder"]

    def __init__(self, args: Args) -> None:
        super().__init__(args)

        if not args.precompute and args.allow_switch_hw and self.accelerator.process_index % 2 == 0:
            f, h, w = self.args.train_resolution
            self.args.train_resolution = (f, w, h)
            self.state.train_frames = args.train_resolution[0]
            self.state.train_height = args.train_resolution[1]
            self.state.train_width = args.train_resolution[2]


    def get_training_dtype(self) -> torch.dtype:
        if self.args.mixed_precision == "no":
            return _DTYPE_MAP["fp32"]
        elif self.args.mixed_precision == "fp16":
            return _DTYPE_MAP["fp16"]
        elif self.args.mixed_precision == "bf16":
            return _DTYPE_MAP["bf16"]
        else:
            raise ValueError(f"Invalid mixed precision: {self.args.mixed_precision}")

    @override
    def load_components(self) -> Dict[str, Any]:
        components = Components()
        model_path = str(self.args.model_path)

        components.pipeline_cls = CogVideoXImageToVideoPipeline

        components.tokenizer = AutoTokenizer.from_pretrained(model_path, subfolder="tokenizer")

        components.text_encoder = T5EncoderModel.from_pretrained(model_path, subfolder="text_encoder")

        components.transformer = CogVideoXTransformer3DModel.from_pretrained(model_path, subfolder="transformer")

        components.vae = AutoencoderKLCogVideoX.from_pretrained(model_path, subfolder="vae")

        components.scheduler = CogVideoXDPMScheduler.from_pretrained(model_path, subfolder="scheduler")

        components.controlnetxs = ControlnetXs("models/camera_controller/CogVideoX1.5-5B-I2V", components.transformer.config)
        self.state.controlnetxs_transformer_config = components.controlnetxs.transformer.config

        return components

    @override
    def prepare_models(self) -> None:
        logger.info("Initializing models")

        if self.components.vae is not None:
            if self.args.enable_slicing:
                self.components.vae.enable_slicing()
            if self.args.enable_tiling:
                self.components.vae.enable_tiling()

        if self.components.controlnetxs.vae_encoder is not None:
            if self.args.enable_slicing:
                self.components.controlnetxs.vae_encoder.enable_slicing()
            if self.args.enable_tiling:
                self.components.controlnetxs.vae_encoder.enable_tiling()

        self.state.transformer_config = self.components.transformer.config

    @override
    def prepare_dataset(self) -> None:
        logger.info("Initializing dataset and dataloader")

        if self.args.model_type == "i2v":
            self.dataset = I2VDatasetWithResize(
                **(self.args.model_dump()),
                device=self.accelerator.device,
                max_num_frames=self.state.train_frames,
                height=self.state.train_height,
                width=self.state.train_width,
                trainer=self,
            )
        elif self.args.model_type == "t2v":
            self.dataset = T2VDatasetWithResize(
                **(self.args.model_dump()),
                device=self.accelerator.device,
                max_num_frames=self.state.train_frames,
                height=self.state.train_height,
                width=self.state.train_width,
                trainer=self,
            )
        else:
            raise ValueError(f"Invalid model type: {self.args.model_type}")

        # Prepare VAE and text encoder for encoding
        self.components.vae.requires_grad_(False)
        self.components.text_encoder.requires_grad_(False)
        self.components.vae = self.components.vae.to(self.accelerator.device, dtype=self.state.weight_dtype)
        self.components.text_encoder = self.components.text_encoder.to(
            self.accelerator.device, dtype=self.state.weight_dtype
        )

        # Precompute latent for video and prompt embedding
        if self.args.precompute:
            logger.info("Precomputing latent for video and prompt embedding ...")
            tmp_data_loader = torch.utils.data.DataLoader(
                self.dataset,
                collate_fn=self.collate_fn,
                batch_size=1,
                num_workers=0,
                pin_memory=self.args.pin_memory,
                shuffle=True
            )
            tmp_data_loader = self.accelerator.prepare_data_loader(tmp_data_loader)
            for _ in tqdm(tmp_data_loader):
                ...
            self.accelerator.wait_for_everyone()
            logger.info("Precomputing latent for video and prompt embedding ... Done")
            return

        unload_model(self.components.vae)
        unload_model(self.components.text_encoder)
        free_memory()

        self.data_loader = torch.utils.data.DataLoader(
            self.dataset,
            collate_fn=self.collate_fn,
            batch_size=self.args.batch_size,
            num_workers=self.args.num_workers,
            pin_memory=self.args.pin_memory,
            shuffle=True,
        )

    @override
    def initialize_pipeline(self) -> CogVideoXImageToVideoPipeline:
        # self.components.transformer.set_controlnetxs_like_adapter(
        #     unwrap_model(self.accelerator, self.components.controlnetxs)
        # )
        pipe = CogVideoXImageToVideoPipeline(
            tokenizer=self.components.tokenizer,
            text_encoder=self.components.text_encoder,
            vae=self.components.vae,
            transformer=self.components.transformer,
            scheduler=self.components.scheduler,
        )
        return pipe

    def decode_video(self, latent: torch.Tensor, video_processor) -> torch.Tensor:
        # shape of input video: [B, C,F//4, H//8, W//8]
        vae = self.components.vae
        latent = latent.to(vae.device, dtype=vae.dtype)

        video = vae.decode(latent / vae.config.scaling_factor).sample
        video = video_processor.postprocess_video(video=video, output_type="pil")
        return video

    @override
    def encode_video(self, video: torch.Tensor) -> torch.Tensor:
        # shape of input video: [B, C, F, H, W]
        vae = self.components.vae
        video = video.to(vae.device, dtype=vae.dtype)
        latent_dist = vae.encode(video).latent_dist
        latent = latent_dist.sample() * vae.config.scaling_factor
        return latent

    @override
    def encode_text(self, prompt: str) -> torch.Tensor:
        prompt_token_ids = self.components.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.state.transformer_config.max_text_seq_length,
            truncation=True,
            add_special_tokens=True,
            return_tensors="pt",
        )
        prompt_token_ids = prompt_token_ids.input_ids
        prompt_embedding = self.components.text_encoder(prompt_token_ids.to(self.accelerator.device))[0]
        return prompt_embedding

    @override
    def collate_fn(self, samples: List[Dict[str, Any]]) -> Dict[str, Any]:
        ret = {
            "encoded_videos": [], "prompt_embeddings": [], "images": [], "plucker_embeddings": [], "prompts": [], "videos": []
        }

        for sample in samples:
            encoded_video = sample["encoded_video"]
            prompt_embedding = sample["prompt_embedding"]
            image = sample["image"]
            plucker_embedding = sample["plucker_embedding"]
            video = sample["video"]
            prompt = sample["prompt"]

            ret["encoded_videos"].append(encoded_video)
            ret["prompt_embeddings"].append(prompt_embedding)
            if not self.args.precompute:
                ret["plucker_embeddings"].append(plucker_embedding)
            ret["images"].append(image)
            ret["videos"].append(video)
            ret["prompts"].append(prompt)

        ret["encoded_videos"] = torch.stack(ret["encoded_videos"])
        ret["prompt_embeddings"] = torch.stack(ret["prompt_embeddings"])
        ret["images"] = torch.stack(ret["images"])
        if not self.args.precompute:
            ret["plucker_embeddings"] = torch.stack(ret["plucker_embeddings"])
        ret["videos"] = torch.stack(ret["videos"])

        return ret

    @override
    def prepare_trainable_parameters(self):
        logger.info("Initializing trainable parameters")

        # For mixed precision training we cast all non-trainable weights to half-precision
        # as these weights are only used for inference, keeping weights in full precision is not required.
        weight_dtype = self.state.weight_dtype

        if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
            # due to pytorch#99272, MPS does not yet support bfloat16.
            raise ValueError(
                "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
            )

        # For LoRA, we freeze all the parameters
        # For SFT, we train all the parameters in transformer model
        for attr_name, component in vars(self.components).items():
            if hasattr(component, "requires_grad_"):
                if self.args.training_type == "sft" and attr_name == "transformer":
                    component.requires_grad_(True)
                else:
                    component.requires_grad_(False)

        if self.args.training_type == "lora":
            transformer_lora_config = LoraConfig(
                r=self.args.rank,
                lora_alpha=self.args.lora_alpha,
                init_lora_weights=True,
                target_modules=self.args.target_modules,
            )
            self.components.transformer.add_adapter(transformer_lora_config)
            self._prepare_saving_loading_hooks(transformer_lora_config)

        # Load components needed for training to GPU (except transformer), and cast them to the specified data type
        ignore_list = ["controlnetxs"] + self.UNLOAD_LIST
        self._move_components_to_device(dtype=weight_dtype, ignore_list=ignore_list)

        if self.args.gradient_checkpointing:
            self.components.transformer.enable_gradient_checkpointing()
            self.components.controlnetxs.enable_gradient_checkpointing()

        self.components.controlnetxs.train()
        self.components.controlnetxs.requires_grad_(True)
        # self.components.controlnetxs.set_main_transformer(self.components.transformer)

    @override
    def prepare_optimizer(self) -> None:
        logger.info("Initializing optimizer and lr scheduler")

        # Make sure the trainable params are in float32
        cast_training_params([self.components.controlnetxs], dtype=torch.float32)

        # For LoRA, we only want to train the LoRA weights
        # For SFT, we want to train all the parameters
        # for idx, (n, p) in enumerate(self.components.controlnetxs.named_parameters()):
        #     if p.requires_grad:
        #         print(idx, n)

        trainable_parameters = list(filter(lambda p: p.requires_grad, self.components.controlnetxs.parameters()))
        trainable_parameters_with_lr = {
            "params": trainable_parameters,
            "lr": self.args.learning_rate,
        }
        params_to_optimize = [trainable_parameters_with_lr]
        self.state.num_trainable_parameters = sum(p.numel() for p in trainable_parameters)

        use_deepspeed_opt = (
                self.accelerator.state.deepspeed_plugin is not None
                and "optimizer" in self.accelerator.state.deepspeed_plugin.deepspeed_config
        )
        optimizer = get_optimizer(
            params_to_optimize=params_to_optimize,
            optimizer_name=self.args.optimizer,
            learning_rate=self.args.learning_rate,
            beta1=self.args.beta1,
            beta2=self.args.beta2,
            beta3=self.args.beta3,
            epsilon=self.args.epsilon,
            weight_decay=self.args.weight_decay,
            use_deepspeed=use_deepspeed_opt,
        )

        num_update_steps_per_epoch = math.ceil(len(self.data_loader) / self.args.gradient_accumulation_steps)
        if self.args.train_steps is None:
            self.args.train_steps = self.args.train_epochs * num_update_steps_per_epoch
            self.state.overwrote_max_train_steps = True

        use_deepspeed_lr_scheduler = (
                self.accelerator.state.deepspeed_plugin is not None
                and "scheduler" in self.accelerator.state.deepspeed_plugin.deepspeed_config
        )
        total_training_steps = self.args.train_steps
        num_warmup_steps = self.args.lr_warmup_steps

        if use_deepspeed_lr_scheduler:
            from accelerate.utils import DummyScheduler

            lr_scheduler = DummyScheduler(
                name=self.args.lr_scheduler,
                optimizer=optimizer,
                total_num_steps=total_training_steps,
                num_warmup_steps=num_warmup_steps,
            )
        else:
            lr_scheduler = get_scheduler(
                name=self.args.lr_scheduler,
                optimizer=optimizer,
                num_warmup_steps=num_warmup_steps,
                num_training_steps=total_training_steps,
                num_cycles=self.args.lr_num_cycles,
                power=self.args.lr_power,
            )

        self.optimizer = optimizer
        self.lr_scheduler = lr_scheduler

    @override
    def prepare_for_training(self) -> None:
        self.components.controlnetxs, self.optimizer, self.data_loader, self.lr_scheduler = self.accelerator.prepare(
            self.components.controlnetxs, self.optimizer, self.data_loader, self.lr_scheduler
        )

        # We need to recalculate our total training steps as the size of the training dataloader may have changed.
        num_update_steps_per_epoch = math.ceil(len(self.data_loader) / self.args.gradient_accumulation_steps)
        if self.state.overwrote_max_train_steps:
            self.args.train_steps = self.args.train_epochs * num_update_steps_per_epoch
        # Afterwards we recalculate our number of training epochs
        self.args.train_epochs = math.ceil(self.args.train_steps / num_update_steps_per_epoch)
        self.state.num_update_steps_per_epoch = num_update_steps_per_epoch

    @override
    def train(self) -> None:
        logger.info("Starting training")

        memory_statistics = get_memory_statistics()
        logger.info(f"Memory before training start: {json.dumps(memory_statistics, indent=4)}")

        self.state.total_batch_size_count = (
                self.args.batch_size * self.accelerator.num_processes * self.args.gradient_accumulation_steps
        )
        info = {
            "trainable parameters": self.state.num_trainable_parameters,
            "total samples": len(self.dataset),
            "train epochs": self.args.train_epochs,
            "train steps": self.args.train_steps,
            "batches per device": self.args.batch_size,
            "total batches observed per epoch": len(self.data_loader),
            "train batch size total count": self.state.total_batch_size_count,
            "gradient accumulation steps": self.args.gradient_accumulation_steps,
        }
        logger.info(f"Training configuration: {json.dumps(info, indent=4)}")

        global_step = 0
        first_epoch = 0
        initial_global_step = 0

        # Potentially load in the weights and states from a previous save
        (
            resume_from_checkpoint_path,
            initial_global_step,
            global_step,
            first_epoch,
        ) = get_latest_ckpt_path_to_resume_from(
            resume_from_checkpoint=self.args.resume_from_checkpoint,
            num_update_steps_per_epoch=self.state.num_update_steps_per_epoch,
        )
        if resume_from_checkpoint_path is not None:
            self.accelerator.load_state(resume_from_checkpoint_path)

        progress_bar = tqdm(
            range(0, self.args.train_steps),
            initial=initial_global_step,
            desc="Training steps",
            disable=not self.accelerator.is_local_main_process,
        )

        accelerator = self.accelerator
        generator = torch.Generator(device=accelerator.device)
        if self.args.seed is not None:
            generator = generator.manual_seed(self.args.seed)
        self.state.generator = generator

        free_memory()
        for epoch in range(first_epoch, self.args.train_epochs):
            logger.debug(f"Starting epoch ({epoch + 1}/{self.args.train_epochs})")

            self.components.controlnetxs.train()
            models_to_accumulate = [self.components.controlnetxs]

            for step, batch in enumerate(self.data_loader):
                logger.debug(f"Starting step {step + 1}")
                logs = {}

                with accelerator.accumulate(models_to_accumulate):
                    # These weighting schemes use a uniform timestep sampling and instead post-weight the loss
                    loss, loss_log = self.compute_loss(batch)
                    accelerator.backward(loss)

                    if accelerator.sync_gradients:
                        if accelerator.distributed_type == DistributedType.DEEPSPEED:
                            grad_norm = self.components.controlnetxs.get_global_grad_norm()
                            # In some cases the grad norm may not return a float
                            if torch.is_tensor(grad_norm):
                                grad_norm = grad_norm.item()
                        else:
                            grad_norm = accelerator.clip_grad_norm_(
                                self.components.controlnetxs.parameters(), self.args.max_grad_norm
                            )
                            if torch.is_tensor(grad_norm):
                                grad_norm = grad_norm.item()

                        logs["grad_norm"] = grad_norm

                    # import ipdb
                    # ipdb.set_trace()
                    self.optimizer.step()
                    self.lr_scheduler.step()
                    self.optimizer.zero_grad()

                # Checks if the accelerator has performed an optimization step behind the scenes
                if accelerator.sync_gradients:
                    # print('0-0', self.components.controlnetxs.transformer.patch_embed.proj.weight.data[0][:5])
                    # print('0-1', self.components.controlnetxs.transformer.patch_embed.proj.weight.grad)
                    # print('1', unwrap_model(self.accelerator, self.components.controlnetxs).transformer.patch_embed.proj.weight.data[0][:5])
                    # print('1', unwrap_model(self.accelerator, self.components.controlnetxs).transformer.patch_embed.proj.weight.grad)
                    progress_bar.update(1)
                    global_step += 1
                    self._maybe_save_checkpoint(global_step)

                    for key, value in loss_log.items():
                        logs[key] = value.item()
                    try:
                        logs["lr"] = self.lr_scheduler.get_last_lr()[0]
                        progress_bar.set_postfix(logs)
                    except:
                        pass

                    # Maybe run validation
                    should_run_validation = self.args.do_validation and global_step % self.args.validation_steps == 0
                    if should_run_validation:
                        del loss
                        free_memory()
                        try:
                            self.validate(global_step)
                        except:
                            print('fail to validate')

                    accelerator.log(logs, step=global_step)

                if global_step >= self.args.train_steps:
                    break

            memory_statistics = get_memory_statistics()
            logger.info(f"Memory after epoch {epoch + 1}: {json.dumps(memory_statistics, indent=4)}")

        accelerator.wait_for_everyone()
        self._maybe_save_checkpoint(global_step, must_save=True)
        if self.args.do_validation:
            free_memory()
            self.validate(global_step)

        del self.components
        free_memory()
        memory_statistics = get_memory_statistics()
        logger.info(f"Memory after training end: {json.dumps(memory_statistics, indent=4)}")

        accelerator.end_training()

    @override
    def compute_loss(self, batch) -> torch.Tensor:
        prompt_embedding = batch["prompt_embeddings"]
        latent = batch["encoded_videos"]
        video = batch["videos"]
        prompt = batch["prompts"]
        images = batch["images"]
        plucker_embedding = batch["plucker_embeddings"]  # B, C, F, H, W

        self.state.image = images[0]  # C, H, W;  value in [0, 255]
        self.state.video = video[0]  # F, C, H, W; value in [-1, 1]
        self.state.prompt_embedding = prompt_embedding[0]  # L, D
        self.state.prompt = prompt[0]
        self.state.plucker_embedding = plucker_embedding[0]  # C=6, F, H, W


        # Shape of prompt_embedding: [B, seq_len, hidden_size]
        # Shape of latent: [B, C, F, H, W]
        # Shape of images: [B, C, H, W]

        patch_size_t = self.state.transformer_config.patch_size_t
        if patch_size_t is not None:
            ncopy = latent.shape[2] % patch_size_t
            # Copy the first frame ncopy times to match patch_size_t
            first_frame = latent[:, :, :1, :, :]  # Get first frame [B, C, 1, H, W]
            latent = torch.cat([first_frame.repeat(1, 1, ncopy, 1, 1), latent], dim=2)
            assert latent.shape[2] % patch_size_t == 0

        batch_size, num_channels, num_frames, height, width = latent.shape

        # Get prompt embeddings
        _, seq_len, _ = prompt_embedding.shape
        prompt_embedding = prompt_embedding.view(batch_size, seq_len, -1).to(dtype=latent.dtype)

        # Add frame dimension to images [B,C,H,W] -> [B,C,F,H,W]
        images = images.unsqueeze(2)
        # Add noise to images
        image_noise_sigma = torch.normal(mean=-3.0, std=0.5, size=(1,), device=self.accelerator.device)
        image_noise_sigma = torch.exp(image_noise_sigma).to(dtype=images.dtype)
        noisy_images = images + torch.randn_like(images) * image_noise_sigma[:, None, None, None, None]
        image_latent_dist = self.components.vae.encode(noisy_images.to(dtype=self.components.vae.dtype)).latent_dist
        image_latents = image_latent_dist.sample() * self.components.vae.config.scaling_factor

        # Sample a random timestep for each sample
        timesteps = torch.randint(
            0, self.components.scheduler.config.num_train_timesteps, (batch_size,), device=self.accelerator.device
        )
        if self.args.time_sampling_type == "truncated_normal":
            time_sampling_dict = {
                'mean': self.args.time_sampling_mean,
                'std': self.args.time_sampling_std,
                'a': self.args.camera_condition_start_timestep / self.components.scheduler.config.num_train_timesteps,
                'b': 1.0,
            }
            timesteps = torch.nn.init.trunc_normal_(
                torch.empty(batch_size, device=self.accelerator.device), **time_sampling_dict
            ) * self.components.scheduler.config.num_train_timesteps

        timesteps = timesteps.long()

        self.state.timestep = timesteps[0].item()

        # from [B, C, F, H, W] to [B, F, C, H, W]
        latent = latent.permute(0, 2, 1, 3, 4)
        image_latents = image_latents.permute(0, 2, 1, 3, 4)
        assert (latent.shape[0], *latent.shape[2:]) == (image_latents.shape[0], *image_latents.shape[2:])

        # Padding image_latents to the same frame number as latent
        padding_shape = (latent.shape[0], latent.shape[1] - 1, *latent.shape[2:])
        latent_padding = image_latents.new_zeros(padding_shape)
        image_latents = torch.cat([image_latents, latent_padding], dim=1)

        # Add noise to latent
        noise = torch.randn_like(latent)
        latent_noisy = self.components.scheduler.add_noise(latent, noise, timesteps)

        # Concatenate latent and image_latents in the channel dimension
        latent_img_noisy = torch.cat([latent_noisy, image_latents], dim=2)

        # Prepare rotary embeds
        vae_scale_factor_spatial = 2 ** (len(self.components.vae.config.block_out_channels) - 1)
        transformer_config = self.state.transformer_config
        controlnetxs_transformer_config = self.state.controlnetxs_transformer_config
        rotary_emb = (
            self.prepare_rotary_positional_embeddings(
                height=height * vae_scale_factor_spatial,
                width=width * vae_scale_factor_spatial,
                num_frames=num_frames,
                transformer_config=transformer_config,
                vae_scale_factor_spatial=vae_scale_factor_spatial,
                device=self.accelerator.device,
            )
            if transformer_config.use_rotary_positional_embeddings
            else None
        )
        rotary_emb_for_controlnetxs = (
            self.prepare_rotary_positional_embeddings(
                height=height * vae_scale_factor_spatial,
                width=width * vae_scale_factor_spatial,
                num_frames=num_frames,
                transformer_config=controlnetxs_transformer_config,
                vae_scale_factor_spatial=vae_scale_factor_spatial,
                device=self.accelerator.device,
            )
            if transformer_config.use_rotary_positional_embeddings
            else None
        )

        # Predict noise
        ofs_emb = (
            None if self.state.transformer_config.ofs_embed_dim is None else latent.new_full((1,), fill_value=2.0)
        )
        if self.args.enable_gft_training:
            camera_condition_gft_beta = torch.ones(timesteps.shape[0]).uniform_(0.2, 1.0).to(self.accelerator.device)  # [0.2, 1.0]
        else:
            camera_condition_gft_beta = torch.ones(timesteps.shape[0]).to(self.accelerator.device)  # [1.0, 1.0]
        predicted_results = self.components.controlnetxs(
            hidden_states=latent_img_noisy,
            encoder_hidden_states=prompt_embedding,
            timestep=timesteps,
            ofs=ofs_emb,
            image_rotary_emb=rotary_emb,
            image_rotary_emb_for_controlnetxs=rotary_emb_for_controlnetxs,
            return_dict=True,
            plucker_embedding=plucker_embedding,  # B,F,C,H,W
            main_transformer=self.components.transformer,
            camera_condition_gft_beta = camera_condition_gft_beta,
            camera_condition_dropout=0.1 if self.args.enable_gft_training else 0.0
        )
        predicted_noise = predicted_results['sample']

        if self.args.enable_gft_training:
            with torch.inference_mode():
                uncond_predicted_results = self.components.controlnetxs(
                    hidden_states=latent_img_noisy,
                    encoder_hidden_states=prompt_embedding,
                    timestep=timesteps,
                    ofs=ofs_emb,
                    image_rotary_emb=rotary_emb,
                    image_rotary_emb_for_controlnetxs=rotary_emb_for_controlnetxs,
                    return_dict=True,
                    plucker_embedding=plucker_embedding,  # B,F,C,H,W
                    main_transformer=self.components.transformer,
                    camera_condition_gft_beta=torch.ones_like(camera_condition_gft_beta),
                    camera_condition_dropout=1.0
                )
                uncond_predicted_noise = uncond_predicted_results['sample']
            predicted_noise = camera_condition_gft_beta[:, None, None, None, None] * predicted_noise \
                                  + (1-camera_condition_gft_beta[:, None, None, None, None]) * uncond_predicted_noise


        # Denoise
        latent_pred = self.components.scheduler.get_velocity(predicted_noise, latent_noisy, timesteps)

        alphas_cumprod = self.components.scheduler.alphas_cumprod[timesteps]
        weights = 1 / (1 - alphas_cumprod)
        while len(weights.shape) < len(latent_pred.shape):
            weights = weights.unsqueeze(-1)

        loss = torch.mean((weights * (latent_pred - latent) ** 2).reshape(batch_size, -1), dim=1)
        loss = loss.mean()
        loss_log = {
            'diffusion_loss': loss.detach(),
        }

        return loss, loss_log

    @override
    def prepare_for_validation(self):
        pass

    @override
    def validate(self, step: int) -> None:
        logger.info("Starting validation")

        accelerator = self.accelerator
        self.components.controlnetxs.eval()
        torch.set_grad_enabled(False)

        memory_statistics = get_memory_statistics()
        logger.info(f"Memory before validation start: {json.dumps(memory_statistics, indent=4)}")

        #####  Initialize pipeline  #####
        pipe = self.initialize_pipeline()

        if self.state.using_deepspeed:
            # Can't using model_cpu_offload in deepspeed,
            # so we need to move all components in pipe to device
            # pipe.to(self.accelerator.device, dtype=self.state.weight_dtype)
            self._move_components_to_device(dtype=self.state.weight_dtype, ignore_list=["controlnetxs", "transformer"])
        else:
            # if not using deepspeed, use model_cpu_offload to further reduce memory usage
            # Or use pipe.enable_sequential_cpu_offload() to further reduce memory usage
            pipe.enable_model_cpu_offload(device=self.accelerator.device)

            # Convert all model weights to training dtype
            # Note, this will change LoRA weights in self.components.transformer to training dtype, rather than keep them in fp32
            pipe = pipe.to(dtype=self.state.weight_dtype)

        #################################

        all_processes_artifacts = []

        image = self.state.image  # C, H, W;  value in [0, 255]
        video = self.state.video  # F, C, H, W; value in [-1, 1]
        prompt_embeds = self.state.prompt_embedding  # L, D
        prompt = self.state.prompt
        plucker_embedding = self.state.plucker_embedding  # C=6, F, H, W

        if image is not None:
            # Convert image tensor (C, H, W) to PIL images
            image = ((image * 0.5 + 0.5) * 255).round().clamp(0, 255).to(torch.uint8)
            image = image.permute(1, 2, 0).cpu().numpy()
            image = Image.fromarray(image)

        if video is not None:
            # Convert video tensor (F, C, H, W) to list of PIL images
            video = ((video * 0.5 + 0.5) * 255).round().clamp(0, 255).to(torch.uint8)
            video = [Image.fromarray(frame.permute(1, 2, 0).cpu().numpy()) for frame in video]

        validation_artifacts = self.validation_step({"prompt_embeds": prompt_embeds, "image": image, "plucker_embedding": plucker_embedding}, pipe)
        prompt_filename = string_to_filename(prompt)[:25]
        artifacts = {
            "conditioned_image": {"type": "image", "value": image},
            "gt_video": {"type": "video", "value": video},
        }

        for i, (artifact_type, artifact_value) in enumerate(validation_artifacts):
            artifacts.update({f"generated_video_{i}": {"type": artifact_type, "value": artifact_value}})

        for key, value in list(artifacts.items()):
            artifact_type = value["type"]
            artifact_value = value["value"]
            if artifact_type not in ["image", "video"] or artifact_value is None:
                continue

            extension = "png" if artifact_type == "image" else "mp4"
            filename = f"validation-{key}-{step}-{accelerator.process_index}-{prompt_filename}.{extension}"
            validation_path = self.args.output_dir / "validation_res"
            validation_path.mkdir(parents=True, exist_ok=True)
            filename = str(validation_path / filename)

            if artifact_type == "image":
                logger.debug(f"Saving image to {filename}")
                artifact_value.save(filename)
                artifact_value = wandb.Image(filename)
            elif artifact_type == "video":
                logger.debug(f"Saving video to {filename}")
                export_to_video(artifact_value, filename, fps=self.args.gen_fps)
                artifact_value = wandb.Video(filename, caption=f"{key}_{prompt}")

            all_processes_artifacts.append(artifact_value)

        all_artifacts = gather_object(all_processes_artifacts)

        if accelerator.is_main_process:
            tracker_key = "validation"
            for tracker in accelerator.trackers:
                if tracker.name == "wandb":
                    image_artifacts = [artifact for artifact in all_artifacts if isinstance(artifact, wandb.Image)]
                    video_artifacts = [artifact for artifact in all_artifacts if isinstance(artifact, wandb.Video)]
                    tracker.log(
                        {
                            tracker_key: {"images": image_artifacts, "videos": video_artifacts},
                        },
                        step=step,
                    )

        ##########  Clean up  ##########
        if self.state.using_deepspeed:
            del pipe
            # Unload models except those needed for training
            self._move_components_to_cpu(unload_list=self.UNLOAD_LIST)
        else:
            pipe.remove_all_hooks()
            del pipe
            # Load models except those not needed for training
            self._move_components_to_device(dtype=self.state.weight_dtype, ignore_list=self.UNLOAD_LIST)
            self.components.controlnetxs.to(self.accelerator.device, dtype=self.state.weight_dtype)

            # Change trainable weights back to fp32 to keep with dtype after prepare the model
            cast_training_params([self.components.controlnetxs], dtype=torch.float32)

        free_memory()
        accelerator.wait_for_everyone()
        ################################

        memory_statistics = get_memory_statistics()
        logger.info(f"Memory after validation end: {json.dumps(memory_statistics, indent=4)}")
        torch.cuda.reset_peak_memory_stats(accelerator.device)

        torch.set_grad_enabled(True)
        self.components.controlnetxs.train()

    @override
    def validation_step(
            self, eval_data: Dict[str, Any], pipe: CogVideoXImageToVideoPipeline
    ) -> List[Tuple[str, Image.Image | List[Image.Image]]]:
        """
        Return the data that needs to be saved. For videos, the data format is List[PIL],
        and for images, the data format is PIL
        """
        prompt_embeds, image, plucker_embedding = eval_data["prompt_embeds"], eval_data["image"], eval_data["plucker_embedding"]

        # camera
        plucker_embedding = plucker_embedding.to(self.components.controlnetxs.vae_encoder.device, dtype=self.components.controlnetxs.vae_encoder.dtype) # [C=6, F, H, W]
        latent_plucker_embedding_dist = self.components.controlnetxs.vae_encoder.encode(plucker_embedding.unsqueeze(0)).latent_dist  # B,C=6,F,H,W --> B,128,F//4,H//4,W//4
        latent_plucker_embedding = latent_plucker_embedding_dist.sample()
        patch_size_t = self.components.transformer.config.patch_size_t
        if patch_size_t is not None:
            ncopy = latent_plucker_embedding.shape[2] % patch_size_t
            # Copy the first frame ncopy times to match patch_size_t
            first_frame = latent_plucker_embedding[:, :, :1, :, :]  # Get first frame [B, C, 1, H, W]
            latent_plucker_embedding = torch.cat([first_frame.repeat(1, 1, ncopy, 1, 1), latent_plucker_embedding], dim=2)
            assert latent_plucker_embedding.shape[2] % patch_size_t == 0
        latent_plucker_embedding = latent_plucker_embedding.permute(0, 2, 1, 3, 4)  # [B, C, F, H, W] to [B, F, C, H, W]

        latent_plucker_embedding = latent_plucker_embedding.repeat(2,1,1,1,1) # cfg
        num_frames = latent_plucker_embedding.shape[1]
        vae_scale_factor_spatial = 2 ** (len(self.components.vae.config.block_out_channels) - 1)
        transformer_config = self.state.transformer_config
        controlnetxs_transformer_config = self.state.controlnetxs_transformer_config
        rotary_emb_for_controlnetxs = (
            self.prepare_rotary_positional_embeddings(
                height=latent_plucker_embedding.shape[-2] * vae_scale_factor_spatial,
                width=latent_plucker_embedding.shape[-1] * vae_scale_factor_spatial,
                num_frames=num_frames,
                transformer_config=controlnetxs_transformer_config,
                vae_scale_factor_spatial=vae_scale_factor_spatial,
                device=self.accelerator.device,
            )
            if transformer_config.use_rotary_positional_embeddings
            else None
        )

        original_forward = pipe.transformer.forward
        if self.args.enable_gft_training:
            camera_condition_gft_beta = torch.ones((latent_plucker_embedding.shape[0], ), device=self.accelerator.device) * 0.4
        else:
            camera_condition_gft_beta = torch.ones((latent_plucker_embedding.shape[0],), device=self.accelerator.device)
        pipe.transformer.forward = partial(
            pipe.transformer.forward,
            controlnetxs=unwrap_model(self.accelerator, self.components.controlnetxs),
            latent_plucker_embedding=latent_plucker_embedding,
            image_rotary_emb_for_controlnetxs=rotary_emb_for_controlnetxs,
            camera_condition_gft_beta=camera_condition_gft_beta,
            camera_condition_start_timestep=self.args.camera_condition_start_timestep
        )
        #########

        video_generate = pipe(
            num_frames=self.state.train_frames,
            height=self.state.train_height,
            width=self.state.train_width,
            prompt_embeds=prompt_embeds.unsqueeze(0),
            image=image,
            generator=self.state.generator,
            num_inference_steps=25
        ).frames[0]
        pipe.transformer.forward = original_forward
        return [("video", video_generate)]

    @override
    def _prepare_saving_loading_hooks(self):
        pass

    def prepare_rotary_positional_embeddings(
            self,
            height: int,
            width: int,
            num_frames: int,
            transformer_config: Dict,
            vae_scale_factor_spatial: int,
            device: torch.device,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        grid_height = height // (vae_scale_factor_spatial * transformer_config.patch_size)
        grid_width = width // (vae_scale_factor_spatial * transformer_config.patch_size)

        if transformer_config.patch_size_t is None:
            base_num_frames = num_frames
        else:
            base_num_frames = (num_frames + transformer_config.patch_size_t - 1) // transformer_config.patch_size_t

        freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
            embed_dim=transformer_config.attention_head_dim,
            crops_coords=None,
            grid_size=(grid_height, grid_width),
            temporal_size=base_num_frames,
            grid_type="slice",
            max_size=(grid_height, grid_width),
            device=device,
        )

        return freqs_cos, freqs_sin


register("cogvideox1.5-i2v", "controlnetxs", CogVideoX1dot5I2VControlnetXsTrainer)