roll-ai's picture
Upload 333 files
e8bdafd verified
import sys
import os
import numpy as np
import open3d as o3d
import torch
from mmengine import Config
from pyvirtualdisplay import Display
from tqdm import tqdm
sys.path.append("Metric3D")
def display_wrapper(func):
def inner(*args, **kwargs):
with Display(visible=False, size=(1920, 1080)):
return func(*args, **kwargs)
return inner
def relative_pose(rt: np.ndarray, mode: str, ref_index: int = 0) -> np.ndarray:
if mode == "left":
rt = np.linalg.inv(rt[ref_index]) @ rt
elif mode == "right":
rt = rt @ np.linalg.inv(rt[ref_index])
return rt
def project_point_cloud(
frame: np.ndarray,
depth: np.ndarray,
intrinsics: list[float],
remove_outliers: bool = True,
voxel_size: float = None,
) -> o3d.geometry.PointCloud:
from mono.utils.unproj_pcd import reconstruct_pcd
points = reconstruct_pcd(depth, *intrinsics).reshape(-1, 3)
colors = frame.reshape(-1, 3) / 255
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points.astype(np.double))
pcd.colors = o3d.utility.Vector3dVector(colors.astype(np.double))
if remove_outliers:
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=12, std_ratio=3.0)
pcd = pcd.select_by_index(ind)
if voxel_size is not None:
pcd = pcd.voxel_down_sample(voxel_size=0.5)
return pcd
def create_camera_frustum(
frame: np.ndarray,
intrinsic: o3d.camera.PinholeCameraIntrinsic,
c2w: np.ndarray,
frustum_scale: float = 0.5,
):
W, H = intrinsic.width, intrinsic.height
fx, fy = intrinsic.get_focal_length()
cx, cy = intrinsic.get_principal_point()
z = frustum_scale
x = (W - cx) * z / fx
y = (H - cy) * z / fy
points = [[0, 0, 0], [-x, -y, z], [x, -y, z], [x, y, z], [-x, y, z]]
lines = [[0, 1], [0, 2], [0, 3], [0, 4], [1, 2], [2, 3], [3, 4], [4, 1]]
line_set = o3d.geometry.LineSet(
points=o3d.utility.Vector3dVector(points),
lines=o3d.utility.Vector2iVector(lines),
)
line_set.paint_uniform_color([0.8, 0.2, 0.2])
line_set.transform(c2w)
vertices = [points[i] for i in [1, 2, 3, 4]]
triangles = [[0, 1, 2], [0, 2, 3]]
img_plane = o3d.geometry.TriangleMesh(
vertices=o3d.utility.Vector3dVector(vertices),
triangles=o3d.utility.Vector3iVector(triangles),
)
img_plane.triangle_uvs = o3d.utility.Vector2dVector(
np.array([[0, 1], [1, 1], [1, 0], [0, 1], [1, 0], [0, 0]])
)
img_plane.transform(c2w)
material = o3d.visualization.rendering.MaterialRecord()
material.shader = "defaultUnlit"
material.albedo_img = o3d.geometry.Image(frame)
return line_set, img_plane, material
class Previewer:
def __init__(self, model_path: str = "pretrained/metric_depth_vit_large_800k.pth"):
self.model_path = model_path
self.depth_predictor = None
def init_depth_predictor(self):
from mono.model.monodepth_model import get_configured_monodepth_model
from mono.utils.running import load_ckpt
self.config = Config.fromfile(
"Metric3D/mono/configs/HourglassDecoder/vit.raft5.large.py"
)
model = get_configured_monodepth_model(self.config)
model = torch.nn.DataParallel(model).cuda().eval().requires_grad_(False)
model, _, _, _ = load_ckpt(self.model_path, model, strict_match=False)
self.depth_predictor = model
def estimate_depths(
self, frames: np.ndarray, intrinsics: list[float]
) -> np.ndarray:
"""
:param frames: `np.ndarray` of shape (B, H, W, C) and range (0, 255)
:param intrinsics: list of [fx, fy, cx, cy]
:return depths: `np.ndarray` of shape (B, H, W) and range (0, 300)
"""
from mono.utils.do_test import transform_test_data_scalecano
if self.depth_predictor is None:
self.init_depth_predictor()
B, H, W, C = frames.shape
rgb_inputs, pads = [], []
for frame in frames:
rgb_input, _, pad, label_scale_factor = transform_test_data_scalecano(
frame, intrinsics, self.config.data_basic
)
rgb_inputs.append(rgb_input)
pads.append(pad)
with torch.inference_mode(), torch.autocast("cuda"): # b c h w
depths, _, _ = self.depth_predictor.module.inference(
{"input": torch.stack(rgb_inputs).cuda(), "pad_info": pads}
)
_, _, h, w = depths.shape
depths = depths[..., pad[0] : h - pad[1], pad[2] : w - pad[3]]
depths = depths * self.config.data_basic.depth_range[-1] / label_scale_factor
depths = torch.nn.functional.interpolate(depths, (H, W), mode="bilinear")
return depths.clamp(0, 300).squeeze(1).cpu().numpy()
@display_wrapper
def render_previews(
self,
frame: np.ndarray,
depth: np.ndarray,
intrinsics: list[float],
w2cs: np.ndarray,
):
"""
:param frame: `np.ndarray` of shape (H, W, C) and range (0, 255)
:param depth: `np.ndarray` of shape (H, W) and range (0, 300)
:param intrinsics: list of [fx, fy, cx, cy]
:param w2cs: `np.ndarray` of shape (4, 4)
:return: previews: `np.ndarray of shape (B, H, W, C) and range (0, 255)`
"""
H, W, _ = frame.shape
K = o3d.camera.PinholeCameraIntrinsic(W, H, *intrinsics)
pcd = project_point_cloud(frame, depth, intrinsics)
mat = o3d.visualization.rendering.MaterialRecord()
mat.shader = "defaultUnlit"
mat.point_size = 2
renderer = o3d.visualization.rendering.OffscreenRenderer(W, H)
renderer.scene.set_background(np.array([1.0, 1.0, 1.0, 1.0]))
renderer.scene.view.set_post_processing(False)
renderer.scene.clear_geometry()
renderer.scene.add_geometry("point cloud", pcd, mat)
previews = []
for w2c in tqdm(relative_pose(w2cs, mode="left")):
renderer.setup_camera(K, w2c)
previews.append(renderer.render_to_image())
return np.stack(previews)
@display_wrapper
def render_4d_scene(
self,
frames: np.ndarray,
depths: np.ndarray,
intrinsics: list[float],
w2cs: np.ndarray,
):
"""
:param frames: `np.ndarray` of shape (B, H, W, C) and range (0, 255)
:param depths: `np.ndarray` of shape (B, H, W) and range (0, 300)
:param intrinsics: list of [fx, fy, cx, cy]
:param w2cs: `np.ndarray` of shape (4, 4)
:return: renderings: `np.ndarray of shape (B, H, W, C) and range (0, 255)`
"""
F, H, W, _ = frames.shape
K = o3d.camera.PinholeCameraIntrinsic(W, H, *intrinsics)
renderer = o3d.visualization.rendering.OffscreenRenderer(W, H)
renderer.scene.set_background(np.array([1.0, 1.0, 1.0, 1.0]))
renderer.scene.view.set_post_processing(False)
c2w_0 = np.linalg.inv(w2cs[0])
eye_pos_world = (c2w_0 @ np.array([0.3, -0.5, -0.5, 1]))[:3]
center_pos_world = (c2w_0 @ np.array([0, 0, 2, 1]))[:3]
up_vector_world = np.array([0, -1, 0])
renderer.scene.camera.look_at(center_pos_world, eye_pos_world, up_vector_world)
point_material = o3d.visualization.rendering.MaterialRecord()
point_material.shader = "defaultUnlit"
point_material.point_size = 2
line_material = o3d.visualization.rendering.MaterialRecord()
line_material.shader = "unlitLine"
line_material.line_width = 3
renderings = []
for frame, depth, w2c in tqdm(zip(frames, depths, w2cs), total=F):
c2w = np.linalg.inv(w2c)
pcd = project_point_cloud(frame, depth, intrinsics)
pcd.transform(c2w)
wire_frame, frustum, frustum_material = create_camera_frustum(frame, K, c2w)
renderer.scene.clear_geometry()
renderer.scene.add_geometry("point cloud", pcd, point_material)
renderer.scene.add_geometry("wire frame", wire_frame, line_material)
renderer.scene.add_geometry("frustum", frustum, frustum_material)
renderings.append(renderer.render_to_image())
return np.stack(renderings)
if __name__ == "__main__":
with Display(visible=False, size=(512, 320)):
o3d.visualization.rendering.OffscreenRenderer(512, 320)