roll-ai's picture
Upload 333 files
e8bdafd verified
import inspect
import math
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import nn
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
try:
import flash_attn_interface
IS_FLASH3_AVAILABLE = True
except Exception as e:
print(f"flash_attn3 load fail: {e}")
IS_FLASH3_AVAILABLE = False
class CogVideoXFlashAttn3ControlnetXsProcessor:
def __init__(self):
pass
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states = None,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
batch_size, sequence_length, _ = hidden_states.shape
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
if not attn.is_cross_attention:
key = apply_rotary_emb(key, image_rotary_emb)
hidden_states = flash_attn_interface.flash_attn_func(
query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2)
)
hidden_states = hidden_states[0]
hidden_states = hidden_states.reshape(batch_size, -1, attn.heads * head_dim)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class CogVideoXFlashAttn3Processor:
def __init__(self):
pass
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
text_seq_length = encoder_hidden_states.size(1)
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb)
if not attn.is_cross_attention:
key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb)
hidden_states = flash_attn_interface.flash_attn_func(
query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2)
)
hidden_states = hidden_states[0]
hidden_states = hidden_states.reshape(batch_size, -1, attn.heads * head_dim)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states, hidden_states = hidden_states.split(
[text_seq_length, hidden_states.size(1) - text_seq_length], dim=1
)
return hidden_states, encoder_hidden_states