Spaces:
Runtime error
Runtime error
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team. | |
# All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import pdb | |
from typing import Any, Dict, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders import PeftAdapterMixin | |
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from diffusers.models.attention import Attention, FeedForward | |
from diffusers.models.attention_processor import AttentionProcessor, FusedCogVideoXAttnProcessor2_0 | |
from diffusers.models.embeddings import CogVideoXPatchEmbed, get_3d_sincos_pos_embed, TimestepEmbedding, Timesteps | |
from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero | |
import inspect | |
import math | |
from typing import Callable, List, Optional, Tuple, Union | |
from diffusers.models.embeddings import apply_rotary_emb | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from diffusers.utils import deprecate, is_torch_xla_available, logging | |
from diffusers.utils.torch_utils import is_torch_version, maybe_allow_in_graph | |
try: | |
from .flash_attn3 import IS_FLASH3_AVAILABLE | |
from .flash_attn3 import flash_attn_interface | |
from .flash_attn3 import CogVideoXFlashAttn3ControlnetXsProcessor, CogVideoXFlashAttn3Processor | |
except: | |
pass | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class CogVideoXControlnetXsPatchEmbed(nn.Module): | |
def __init__( | |
self, | |
patch_size: int = 2, | |
patch_size_t: Optional[int] = None, | |
in_channels: int = 16, | |
embed_dim: int = 1920, | |
bias: bool = True, | |
sample_width: int = 90, | |
sample_height: int = 60, | |
sample_frames: int = 49, | |
temporal_compression_ratio: int = 4, | |
spatial_interpolation_scale: float = 1.875, | |
temporal_interpolation_scale: float = 1.0, | |
use_positional_embeddings: bool = True, | |
use_learned_positional_embeddings: bool = True, | |
) -> None: | |
super().__init__() | |
self.patch_size = patch_size | |
self.patch_size_t = patch_size_t | |
self.embed_dim = embed_dim | |
self.sample_height = sample_height | |
self.sample_width = sample_width | |
self.sample_frames = sample_frames | |
self.temporal_compression_ratio = temporal_compression_ratio | |
self.spatial_interpolation_scale = spatial_interpolation_scale | |
self.temporal_interpolation_scale = temporal_interpolation_scale | |
self.use_positional_embeddings = use_positional_embeddings | |
self.use_learned_positional_embeddings = use_learned_positional_embeddings | |
if patch_size_t is None: | |
# CogVideoX 1.0 checkpoints | |
self.proj = nn.Conv2d( | |
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias | |
) | |
else: | |
# CogVideoX 1.5 checkpoints | |
self.proj = nn.Linear(in_channels * patch_size * patch_size * patch_size_t, embed_dim) | |
if use_positional_embeddings or use_learned_positional_embeddings: | |
persistent = use_learned_positional_embeddings | |
pos_embedding = self._get_positional_embeddings(sample_height, sample_width, sample_frames) | |
self.register_buffer("pos_embedding", pos_embedding, persistent=persistent) | |
def _get_positional_embeddings( | |
self, sample_height: int, sample_width: int, sample_frames: int, device: Optional[torch.device] = None | |
) -> torch.Tensor: | |
post_patch_height = sample_height // self.patch_size | |
post_patch_width = sample_width // self.patch_size | |
post_time_compression_frames = (sample_frames - 1) // self.temporal_compression_ratio + 1 | |
num_patches = post_patch_height * post_patch_width * post_time_compression_frames | |
pos_embedding = get_3d_sincos_pos_embed( | |
self.embed_dim, | |
(post_patch_width, post_patch_height), | |
post_time_compression_frames, | |
self.spatial_interpolation_scale, | |
self.temporal_interpolation_scale, | |
device=device, | |
output_type="pt", | |
) | |
pos_embedding = pos_embedding.flatten(0, 1) | |
joint_pos_embedding = pos_embedding.new_zeros( | |
1, num_patches, self.embed_dim, requires_grad=False | |
) | |
joint_pos_embedding.data[:, :].copy_(pos_embedding) | |
return joint_pos_embedding | |
def forward(self, image_embeds: torch.Tensor): | |
r""" | |
Args: | |
image_embeds (`torch.Tensor`): | |
Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width). | |
""" | |
batch_size, num_frames, channels, height, width = image_embeds.shape | |
if self.patch_size_t is None: | |
image_embeds = image_embeds.reshape(-1, channels, height, width) | |
image_embeds = self.proj(image_embeds) | |
image_embeds = image_embeds.view(batch_size, num_frames, *image_embeds.shape[1:]) | |
image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels] | |
image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels] | |
else: | |
p = self.patch_size | |
p_t = self.patch_size_t | |
image_embeds = image_embeds.permute(0, 1, 3, 4, 2) | |
image_embeds = image_embeds.reshape( | |
batch_size, num_frames // p_t, p_t, height // p, p, width // p, p, channels | |
) | |
image_embeds = image_embeds.permute(0, 1, 3, 5, 7, 2, 4, 6).flatten(4, 7).flatten(1, 3) | |
image_embeds = self.proj(image_embeds) | |
embeds = image_embeds.contiguous() # [batch, num_frames x height x width, channels] | |
if self.use_positional_embeddings or self.use_learned_positional_embeddings: | |
if self.use_learned_positional_embeddings and (self.sample_width != width or self.sample_height != height): | |
raise ValueError( | |
"It is currently not possible to generate videos at a different resolution that the defaults. This should only be the case with 'THUDM/CogVideoX-5b-I2V'." | |
"If you think this is incorrect, please open an issue at https://github.com/huggingface/diffusers/issues." | |
) | |
pre_time_compression_frames = (num_frames - 1) * self.temporal_compression_ratio + 1 | |
if ( | |
self.sample_height != height | |
or self.sample_width != width | |
or self.sample_frames != pre_time_compression_frames | |
): | |
pos_embedding = self._get_positional_embeddings( | |
height, width, pre_time_compression_frames, device=embeds.device | |
) | |
else: | |
pos_embedding = self.pos_embedding | |
pos_embedding = pos_embedding.to(dtype=embeds.dtype) | |
embeds = embeds + pos_embedding | |
return embeds | |
class CogVideoXControlnetXsLayerNormZero(nn.Module): | |
def __init__( | |
self, | |
conditioning_dim: int, | |
embedding_dim: int, | |
elementwise_affine: bool = True, | |
eps: float = 1e-5, | |
bias: bool = True, | |
) -> None: | |
super().__init__() | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(conditioning_dim, 3 * embedding_dim, bias=bias) | |
self.norm = nn.LayerNorm(embedding_dim, eps=eps, elementwise_affine=elementwise_affine) | |
def forward( | |
self, hidden_states: torch.Tensor, temb: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
shift, scale, gate = self.linear(self.silu(temb)).chunk(3, dim=1) | |
hidden_states = self.norm(hidden_states) * (1 + scale)[:, None, :] + shift[:, None, :] | |
return hidden_states, gate[:, None, :] | |
class CogVideoXControlnetXsAttnProcessor2_0: | |
r""" | |
Processor for implementing scaled dot-product attention for the CogVideoX model. It applies a rotary embedding on | |
query and key vectors, but does not include spatial normalization. | |
""" | |
def __init__(self): | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("CogVideoXAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.Tensor, | |
encoder_hidden_states = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
image_rotary_emb: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
batch_size, sequence_length, _ = hidden_states.shape | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
query = attn.to_q(hidden_states) | |
key = attn.to_k(hidden_states) | |
value = attn.to_v(hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # B,L,H,D --> B,H,L,D | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if attn.norm_q is not None: | |
query = attn.norm_q(query) | |
if attn.norm_k is not None: | |
key = attn.norm_k(key) | |
# Apply RoPE if needed | |
if image_rotary_emb is not None: | |
from diffusers.models.embeddings import apply_rotary_emb | |
query = apply_rotary_emb(query, image_rotary_emb) | |
if not attn.is_cross_attention: | |
key = apply_rotary_emb(key, image_rotary_emb) | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
return hidden_states | |
class CogVideoXControlnetXsBlock(nn.Module): | |
r""" | |
Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model. | |
Parameters: | |
dim (`int`): | |
The number of channels in the input and output. | |
num_attention_heads (`int`): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): | |
The number of channels in each head. | |
time_embed_dim (`int`): | |
The number of channels in timestep embedding. | |
dropout (`float`, defaults to `0.0`): | |
The dropout probability to use. | |
activation_fn (`str`, defaults to `"gelu-approximate"`): | |
Activation function to be used in feed-forward. | |
attention_bias (`bool`, defaults to `False`): | |
Whether or not to use bias in attention projection layers. | |
qk_norm (`bool`, defaults to `True`): | |
Whether or not to use normalization after query and key projections in Attention. | |
norm_elementwise_affine (`bool`, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_eps (`float`, defaults to `1e-5`): | |
Epsilon value for normalization layers. | |
final_dropout (`bool` defaults to `False`): | |
Whether to apply a final dropout after the last feed-forward layer. | |
ff_inner_dim (`int`, *optional*, defaults to `None`): | |
Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used. | |
ff_bias (`bool`, defaults to `True`): | |
Whether or not to use bias in Feed-forward layer. | |
attention_out_bias (`bool`, defaults to `True`): | |
Whether or not to use bias in Attention output projection layer. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
time_embed_dim: int, | |
dropout: float = 0.0, | |
activation_fn: str = "gelu-approximate", | |
attention_bias: bool = False, | |
qk_norm: bool = True, | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-5, | |
final_dropout: bool = True, | |
ff_inner_dim: Optional[int] = None, | |
ff_bias: bool = True, | |
attention_out_bias: bool = True, | |
): | |
super().__init__() | |
# 1. Self Attention | |
self.norm1 = CogVideoXControlnetXsLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) | |
self.attn1 = Attention( | |
query_dim=dim, | |
dim_head=attention_head_dim, | |
heads=num_attention_heads, | |
qk_norm="layer_norm" if qk_norm else None, | |
eps=1e-6, | |
bias=attention_bias, | |
out_bias=attention_out_bias, | |
processor=CogVideoXControlnetXsAttnProcessor2_0(), | |
) | |
if IS_FLASH3_AVAILABLE: | |
self.attn1.set_processor(CogVideoXFlashAttn3ControlnetXsProcessor()) | |
# 2. Feed Forward | |
self.norm2 = CogVideoXControlnetXsLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
inner_dim=ff_inner_dim, | |
bias=ff_bias, | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
temb: torch.Tensor, | |
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
) -> torch.Tensor: | |
# norm & modulate | |
norm_hidden_states, gate_msa = self.norm1(hidden_states, temb) | |
# attention | |
attn_hidden_states = self.attn1( | |
hidden_states=norm_hidden_states, | |
image_rotary_emb=image_rotary_emb, | |
) | |
hidden_states = hidden_states + gate_msa * attn_hidden_states | |
# norm & modulate | |
norm_hidden_states, gate_ff = self.norm2(hidden_states, temb) | |
# feed-forward | |
ff_output = self.ff(norm_hidden_states) | |
hidden_states = hidden_states + gate_ff * ff_output | |
return hidden_states | |
class CogVideoXTransformer3DControlnetXs(ModelMixin, ConfigMixin, PeftAdapterMixin): | |
""" | |
A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo). | |
Parameters: | |
num_attention_heads (`int`, defaults to `30`): | |
The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, defaults to `64`): | |
The number of channels in each head. | |
in_channels (`int`, defaults to `16`): | |
The number of channels in the input. | |
out_channels (`int`, *optional*, defaults to `16`): | |
The number of channels in the output. | |
flip_sin_to_cos (`bool`, defaults to `True`): | |
Whether to flip the sin to cos in the time embedding. | |
time_embed_dim (`int`, defaults to `512`): | |
Output dimension of timestep embeddings. | |
ofs_embed_dim (`int`, defaults to `512`): | |
Output dimension of "ofs" embeddings used in CogVideoX-5b-I2B in version 1.5 | |
text_embed_dim (`int`, defaults to `4096`): | |
Input dimension of text embeddings from the text encoder. | |
num_layers (`int`, defaults to `30`): | |
The number of layers of Transformer blocks to use. | |
dropout (`float`, defaults to `0.0`): | |
The dropout probability to use. | |
attention_bias (`bool`, defaults to `True`): | |
Whether to use bias in the attention projection layers. | |
sample_width (`int`, defaults to `90`): | |
The width of the input latents. | |
sample_height (`int`, defaults to `60`): | |
The height of the input latents. | |
sample_frames (`int`, defaults to `49`): | |
The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49 | |
instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings, | |
but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with | |
K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1). | |
patch_size (`int`, defaults to `2`): | |
The size of the patches to use in the patch embedding layer. | |
temporal_compression_ratio (`int`, defaults to `4`): | |
The compression ratio across the temporal dimension. See documentation for `sample_frames`. | |
max_text_seq_length (`int`, defaults to `226`): | |
The maximum sequence length of the input text embeddings. | |
activation_fn (`str`, defaults to `"gelu-approximate"`): | |
Activation function to use in feed-forward. | |
timestep_activation_fn (`str`, defaults to `"silu"`): | |
Activation function to use when generating the timestep embeddings. | |
norm_elementwise_affine (`bool`, defaults to `True`): | |
Whether to use elementwise affine in normalization layers. | |
norm_eps (`float`, defaults to `1e-5`): | |
The epsilon value to use in normalization layers. | |
spatial_interpolation_scale (`float`, defaults to `1.875`): | |
Scaling factor to apply in 3D positional embeddings across spatial dimensions. | |
temporal_interpolation_scale (`float`, defaults to `1.0`): | |
Scaling factor to apply in 3D positional embeddings across temporal dimensions. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
num_attention_heads: int = 30, | |
attention_head_dim: int = 64, | |
in_channels: int = 16, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
time_embed_dim: int = 512, | |
text_embed_dim: int = 4096, | |
num_layers: int = 30, | |
dropout: float = 0.0, | |
attention_bias: bool = True, | |
sample_width: int = 90, | |
sample_height: int = 60, | |
sample_frames: int = 49, | |
patch_size: int = 2, | |
patch_size_t: Optional[int] = None, | |
temporal_compression_ratio: int = 4, | |
max_text_seq_length: int = 226, | |
activation_fn: str = "gelu-approximate", | |
timestep_activation_fn: str = "silu", | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-5, | |
spatial_interpolation_scale: float = 1.875, | |
temporal_interpolation_scale: float = 1.0, | |
use_rotary_positional_embeddings: bool = False, | |
use_learned_positional_embeddings: bool = False, | |
patch_bias: bool = True, | |
**kwargs | |
): | |
super().__init__() | |
inner_dim = num_attention_heads * attention_head_dim | |
if not use_rotary_positional_embeddings and use_learned_positional_embeddings: | |
raise ValueError( | |
"There are no CogVideoX checkpoints available with disable rotary embeddings and learned positional " | |
"embeddings. If you're using a custom model and/or believe this should be supported, please open an " | |
"issue at https://github.com/huggingface/diffusers/issues." | |
) | |
# 1. Patch embedding | |
self.patch_embed = CogVideoXControlnetXsPatchEmbed( | |
patch_size=patch_size, | |
patch_size_t=patch_size_t, | |
in_channels=in_channels, | |
embed_dim=inner_dim, | |
bias=patch_bias, | |
sample_width=sample_width, | |
sample_height=sample_height, | |
sample_frames=sample_frames, | |
temporal_compression_ratio=temporal_compression_ratio, | |
spatial_interpolation_scale=spatial_interpolation_scale, | |
temporal_interpolation_scale=temporal_interpolation_scale, | |
use_positional_embeddings=not use_rotary_positional_embeddings, | |
use_learned_positional_embeddings=use_learned_positional_embeddings, | |
) | |
self.embedding_dropout = nn.Dropout(dropout) | |
# 2. Time embeddings and ofs embedding(Only CogVideoX1.5-5B I2V have) | |
# self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) | |
# self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn) | |
self.camera_condition_gft_beta_proj = Timesteps(time_embed_dim, flip_sin_to_cos, freq_shift) | |
self.camera_condition_gft_beta_embedding = TimestepEmbedding( | |
time_embed_dim, time_embed_dim, timestep_activation_fn | |
) # same as time embeddings, for camera_condition_gft_beta | |
# 3. Define spatio-temporal transformers blocks | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
CogVideoXControlnetXsBlock( | |
dim=inner_dim, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
time_embed_dim=time_embed_dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
attention_bias=attention_bias, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
self.gradient_checkpointing = False | |
def _set_gradient_checkpointing(self, module, value=False): | |
self.gradient_checkpointing = value | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
r""" | |
Returns: | |
`dict` of attention processors: A dictionary containing all attention processors used in the model with | |
indexed by its weight name. | |
""" | |
# set recursively | |
processors = {} | |
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
if hasattr(module, "get_processor"): | |
processors[f"{name}.processor"] = module.get_processor() | |
for sub_name, child in module.named_children(): | |
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
return processors | |
for name, module in self.named_children(): | |
fn_recursive_add_processors(name, module, processors) | |
return processors | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
r""" | |
Sets the attention processor to use to compute attention. | |
Parameters: | |
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
for **all** `Attention` layers. | |
If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
processor. This is strongly recommended when setting trainable attention processors. | |
""" | |
count = len(self.attn_processors.keys()) | |
if isinstance(processor, dict) and len(processor) != count: | |
raise ValueError( | |
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
) | |
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
if hasattr(module, "set_processor"): | |
if not isinstance(processor, dict): | |
module.set_processor(processor) | |
else: | |
module.set_processor(processor.pop(f"{name}.processor")) | |
for sub_name, child in module.named_children(): | |
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
for name, module in self.named_children(): | |
fn_recursive_attn_processor(name, module, processor) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedCogVideoXAttnProcessor2_0 | |
def fuse_qkv_projections(self): | |
""" | |
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) | |
are fused. For cross-attention modules, key and value projection matrices are fused. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
self.original_attn_processors = None | |
for _, attn_processor in self.attn_processors.items(): | |
if "Added" in str(attn_processor.__class__.__name__): | |
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") | |
self.original_attn_processors = self.attn_processors | |
for module in self.modules(): | |
if isinstance(module, Attention): | |
module.fuse_projections(fuse=True) | |
self.set_attn_processor(FusedCogVideoXAttnProcessor2_0()) | |
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
def unfuse_qkv_projections(self): | |
"""Disables the fused QKV projection if enabled. | |
<Tip warning={true}> | |
This API is 🧪 experimental. | |
</Tip> | |
""" | |
if self.original_attn_processors is not None: | |
self.set_attn_processor(self.original_attn_processors) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
timestep: Union[int, float, torch.LongTensor], | |
timestep_cond: Optional[torch.Tensor] = None, | |
ofs: Optional[Union[int, float, torch.LongTensor]] = None, | |
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
attention_kwargs: Optional[Dict[str, Any]] = None, | |
return_dict: bool = True, | |
): | |
pass | |
# batch_size, num_frames, channels, height, width = hidden_states.shape | |
# | |
# # 1. Time embedding | |
# timesteps = timestep | |
# t_emb = self.time_proj(timesteps) | |
# | |
# # timesteps does not contain any weights and will always return f32 tensors | |
# # but time_embedding might actually be running in fp16. so we need to cast here. | |
# # there might be better ways to encapsulate this. | |
# t_emb = t_emb.to(dtype=hidden_states.dtype) | |
# emb = self.time_embedding(t_emb, timestep_cond) | |
# | |
# if self.ofs_embedding is not None: | |
# ofs_emb = self.ofs_proj(ofs) | |
# ofs_emb = ofs_emb.to(dtype=hidden_states.dtype) | |
# ofs_emb = self.ofs_embedding(ofs_emb) | |
# emb = emb + ofs_emb | |
# | |
# # 2. Patch embedding | |
# text_seq_length = encoder_hidden_states.shape[1] | |
# hidden_states = self.patch_embed(encoder_hidden_states, hidden_states) | |
# hidden_states = self.embedding_dropout(hidden_states) | |
# | |
# encoder_hidden_states = hidden_states[:, :text_seq_length] | |
# hidden_states = hidden_states[:, text_seq_length:] | |
# | |
# | |
# # 3. Transformer blocks | |
# for i, block in enumerate(self.transformer_blocks): | |
# if self.camera_controller is not None and camera_embedding is not None and i == len(self.transformer_blocks)//2: | |
# hidden_states = self.camera_controller( | |
# camera_embedding, hidden_states, emb, | |
# gradient_checkpointing=self.gradient_checkpointing | |
# ) | |
# | |
# if torch.is_grad_enabled() and self.gradient_checkpointing: | |
# | |
# def create_custom_forward(module): | |
# def custom_forward(*inputs): | |
# return module(*inputs) | |
# | |
# return custom_forward | |
# | |
# ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
# hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( | |
# create_custom_forward(block), | |
# hidden_states, | |
# encoder_hidden_states, | |
# emb, | |
# image_rotary_emb, | |
# **ckpt_kwargs, | |
# ) | |
# else: | |
# hidden_states, encoder_hidden_states = block( | |
# hidden_states=hidden_states, | |
# encoder_hidden_states=encoder_hidden_states, | |
# temb=emb, | |
# image_rotary_emb=image_rotary_emb, | |
# ) | |
# return hidden_states | |