Spaces:
Runtime error
Runtime error
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team. | |
# All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Dict, Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.loaders.single_file_model import FromOriginalModelMixin | |
from diffusers.utils import logging | |
from diffusers.utils.accelerate_utils import apply_forward_hook | |
from diffusers.models.modeling_outputs import AutoencoderKLOutput | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution | |
from diffusers.models.autoencoders.autoencoder_kl_cogvideox import CogVideoXCausalConv3d, CogVideoXDownBlock3D, CogVideoXMidBlock3D | |
# from diffusers.models.autoencoders.autoencoder_kl_cogvideox import CogVideoXEncoder3D, CogVideoXCausalConv3d, CogVideoXDownBlock3D, CogVideoXMidBlock3D | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class CogVideoXDecoder3D(nn.Module): | |
r""" | |
The `CogVideoXDecoder3D` layer of a variational autoencoder that decodes its latent representation into an output | |
sample. | |
Args: | |
in_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
out_channels (`int`, *optional*, defaults to 3): | |
The number of output channels. | |
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`): | |
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options. | |
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): | |
The number of output channels for each block. | |
act_fn (`str`, *optional*, defaults to `"silu"`): | |
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
layers_per_block (`int`, *optional*, defaults to 2): | |
The number of layers per block. | |
norm_num_groups (`int`, *optional*, defaults to 32): | |
The number of groups for normalization. | |
""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
in_channels: int = 16, | |
out_channels: int = 3, | |
up_block_types: Tuple[str, ...] = ( | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
), | |
block_out_channels: Tuple[int, ...] = (128, 256, 256, 512), | |
layers_per_block: int = 3, | |
act_fn: str = "silu", | |
norm_eps: float = 1e-6, | |
norm_num_groups: int = 32, | |
dropout: float = 0.0, | |
pad_mode: str = "first", | |
temporal_compression_ratio: float = 4, | |
): | |
super().__init__() | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
self.conv_in = CogVideoXCausalConv3d( | |
in_channels, reversed_block_out_channels[0], kernel_size=3, pad_mode=pad_mode | |
) | |
# mid block | |
self.mid_block = CogVideoXMidBlock3D( | |
in_channels=reversed_block_out_channels[0], | |
temb_channels=0, | |
num_layers=2, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
spatial_norm_dim=in_channels, | |
pad_mode=pad_mode, | |
) | |
# up blocks | |
self.up_blocks = nn.ModuleList([]) | |
output_channel = reversed_block_out_channels[0] | |
temporal_compress_level = int(np.log2(temporal_compression_ratio)) | |
for i, up_block_type in enumerate(up_block_types): | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
compress_time = i < temporal_compress_level | |
if up_block_type == "CogVideoXUpBlock3D": | |
up_block = CogVideoXUpBlock3D( | |
in_channels=prev_output_channel, | |
out_channels=output_channel, | |
temb_channels=0, | |
dropout=dropout, | |
num_layers=layers_per_block + 1, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
spatial_norm_dim=in_channels, | |
add_upsample=not is_final_block, | |
compress_time=compress_time, | |
pad_mode=pad_mode, | |
) | |
prev_output_channel = output_channel | |
else: | |
raise ValueError("Invalid `up_block_type` encountered. Must be `CogVideoXUpBlock3D`") | |
self.up_blocks.append(up_block) | |
self.norm_out = CogVideoXSpatialNorm3D(reversed_block_out_channels[-1], in_channels, groups=norm_num_groups) | |
self.conv_act = nn.SiLU() | |
self.conv_out = CogVideoXCausalConv3d( | |
reversed_block_out_channels[-1], out_channels, kernel_size=3, pad_mode=pad_mode | |
) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
sample: torch.Tensor, | |
temb: Optional[torch.Tensor] = None, | |
conv_cache: Optional[Dict[str, torch.Tensor]] = None, | |
) -> torch.Tensor: | |
r"""The forward method of the `CogVideoXDecoder3D` class.""" | |
new_conv_cache = {} | |
conv_cache = conv_cache or {} | |
hidden_states, new_conv_cache["conv_in"] = self.conv_in(sample, conv_cache=conv_cache.get("conv_in")) | |
if torch.is_grad_enabled() and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
# 1. Mid | |
hidden_states, new_conv_cache["mid_block"] = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.mid_block), | |
hidden_states, | |
temb, | |
sample, | |
conv_cache.get("mid_block"), | |
use_reentrant=False | |
) | |
# 2. Up | |
for i, up_block in enumerate(self.up_blocks): | |
conv_cache_key = f"up_block_{i}" | |
hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(up_block), | |
hidden_states, | |
temb, | |
sample, | |
conv_cache.get(conv_cache_key), | |
use_reentrant=False | |
) | |
else: | |
# 1. Mid | |
hidden_states, new_conv_cache["mid_block"] = self.mid_block( | |
hidden_states, temb, sample, conv_cache=conv_cache.get("mid_block") | |
) | |
# 2. Up | |
for i, up_block in enumerate(self.up_blocks): | |
conv_cache_key = f"up_block_{i}" | |
hidden_states, new_conv_cache[conv_cache_key] = up_block( | |
hidden_states, temb, sample, conv_cache=conv_cache.get(conv_cache_key) | |
) | |
# 3. Post-process | |
hidden_states, new_conv_cache["norm_out"] = self.norm_out( | |
hidden_states, sample, conv_cache=conv_cache.get("norm_out") | |
) | |
hidden_states = self.conv_act(hidden_states) | |
hidden_states, new_conv_cache["conv_out"] = self.conv_out(hidden_states, conv_cache=conv_cache.get("conv_out")) | |
return hidden_states, new_conv_cache | |
class ControlnetXsVaeDecoderCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin): | |
r""" | |
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in | |
[CogVideoX](https://github.com/THUDM/CogVideo). | |
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented | |
for all models (such as downloading or saving). | |
Parameters: | |
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. | |
out_channels (int, *optional*, defaults to 3): Number of channels in the output. | |
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): | |
Tuple of downsample block types. | |
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): | |
Tuple of upsample block types. | |
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): | |
Tuple of block output channels. | |
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. | |
sample_size (`int`, *optional*, defaults to `32`): Sample input size. | |
scaling_factor (`float`, *optional*, defaults to `1.15258426`): | |
The component-wise standard deviation of the trained latent space computed using the first batch of the | |
training set. This is used to scale the latent space to have unit variance when training the diffusion | |
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the | |
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 | |
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image | |
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. | |
force_upcast (`bool`, *optional*, default to `True`): | |
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE | |
can be fine-tuned / trained to a lower range without loosing too much precision in which case | |
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix | |
""" | |
_supports_gradient_checkpointing = True | |
_no_split_modules = ["CogVideoXResnetBlock3D"] | |
def __init__( | |
self, | |
out_channels: int = 3, | |
up_block_types: Tuple[str] = ( | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
"CogVideoXUpBlock3D", | |
), | |
block_out_channels: Tuple[int] = (128, 256, 256, 512), | |
latent_channels: int = 16, | |
layers_per_block: int = 3, | |
act_fn: str = "silu", | |
norm_eps: float = 1e-6, | |
norm_num_groups: int = 32, | |
temporal_compression_ratio: float = 4, | |
sample_height: int = 480, | |
sample_width: int = 720, | |
): | |
super().__init__() | |
self.decoder = CogVideoXDecoder3D( | |
in_channels=latent_channels, | |
out_channels=out_channels, | |
up_block_types=up_block_types, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
act_fn=act_fn, | |
norm_eps=norm_eps, | |
norm_num_groups=norm_num_groups, | |
temporal_compression_ratio=temporal_compression_ratio, | |
) | |
self.use_slicing = False | |
self.use_tiling = False | |
# Can be increased to decode more latent frames at once, but comes at a reasonable memory cost and it is not | |
# recommended because the temporal parts of the VAE, here, are tricky to understand. | |
# If you decode X latent frames together, the number of output frames is: | |
# (X + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) => X + 6 frames | |
# | |
# Example with num_latent_frames_batch_size = 2: | |
# - 12 latent frames: (0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11) are processed together | |
# => (12 // 2 frame slices) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) | |
# => 6 * 8 = 48 frames | |
# - 13 latent frames: (0, 1, 2) (special case), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12) are processed together | |
# => (1 frame slice) * ((3 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) + | |
# ((13 - 3) // 2) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) | |
# => 1 * 9 + 5 * 8 = 49 frames | |
# It has been implemented this way so as to not have "magic values" in the code base that would be hard to explain. Note that | |
# setting it to anything other than 2 would give poor results because the VAE hasn't been trained to be adaptive with different | |
# number of temporal frames. | |
self.num_latent_frames_batch_size = 2 | |
self.num_sample_frames_batch_size = 8 | |
# We make the minimum height and width of sample for tiling half that of the generally supported | |
self.tile_sample_min_height = sample_height // 2 | |
self.tile_sample_min_width = sample_width // 2 | |
self.tile_latent_min_height = int( | |
self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1)) | |
) | |
self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1))) | |
# These are experimental overlap factors that were chosen based on experimentation and seem to work best for | |
# 720x480 (WxH) resolution. The above resolution is the strongly recommended generation resolution in CogVideoX | |
# and so the tiling implementation has only been tested on those specific resolutions. | |
self.tile_overlap_factor_height = 1 / 6 | |
self.tile_overlap_factor_width = 1 / 5 | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, CogVideoXDecoder3D): | |
module.gradient_checkpointing = value | |
def enable_tiling( | |
self, | |
tile_sample_min_height: Optional[int] = None, | |
tile_sample_min_width: Optional[int] = None, | |
tile_overlap_factor_height: Optional[float] = None, | |
tile_overlap_factor_width: Optional[float] = None, | |
) -> None: | |
r""" | |
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
processing larger images. | |
Args: | |
tile_sample_min_height (`int`, *optional*): | |
The minimum height required for a sample to be separated into tiles across the height dimension. | |
tile_sample_min_width (`int`, *optional*): | |
The minimum width required for a sample to be separated into tiles across the width dimension. | |
tile_overlap_factor_height (`int`, *optional*): | |
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are | |
no tiling artifacts produced across the height dimension. Must be between 0 and 1. Setting a higher | |
value might cause more tiles to be processed leading to slow down of the decoding process. | |
tile_overlap_factor_width (`int`, *optional*): | |
The minimum amount of overlap between two consecutive horizontal tiles. This is to ensure that there | |
are no tiling artifacts produced across the width dimension. Must be between 0 and 1. Setting a higher | |
value might cause more tiles to be processed leading to slow down of the decoding process. | |
""" | |
self.use_tiling = True | |
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height | |
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width | |
self.tile_latent_min_height = int( | |
self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1)) | |
) | |
self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1))) | |
self.tile_overlap_factor_height = tile_overlap_factor_height or self.tile_overlap_factor_height | |
self.tile_overlap_factor_width = tile_overlap_factor_width or self.tile_overlap_factor_width | |
def disable_tiling(self) -> None: | |
r""" | |
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing | |
decoding in one step. | |
""" | |
self.use_tiling = False | |
def enable_slicing(self) -> None: | |
r""" | |
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
""" | |
self.use_slicing = True | |
def disable_slicing(self) -> None: | |
r""" | |
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing | |
decoding in one step. | |
""" | |
self.use_slicing = False | |
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
batch_size, num_channels, num_frames, height, width = z.shape | |
if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height): | |
return self.tiled_decode(z, return_dict=return_dict) | |
frame_batch_size = self.num_latent_frames_batch_size | |
num_batches = max(num_frames // frame_batch_size, 1) | |
conv_cache = None | |
dec = [] | |
for i in range(num_batches): | |
remaining_frames = num_frames % frame_batch_size | |
start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames) | |
end_frame = frame_batch_size * (i + 1) + remaining_frames | |
z_intermediate = z[:, :, start_frame:end_frame] | |
z_intermediate, conv_cache = self.decoder(z_intermediate, conv_cache=conv_cache) | |
dec.append(z_intermediate) | |
dec = torch.cat(dec, dim=2) | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
""" | |
Decode a batch of images. | |
Args: | |
z (`torch.Tensor`): Input batch of latent vectors. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.vae.DecoderOutput`] or `tuple`: | |
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
returned. | |
""" | |
if self.use_slicing and z.shape[0] > 1: | |
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] | |
decoded = torch.cat(decoded_slices) | |
else: | |
decoded = self._decode(z).sample | |
if not return_dict: | |
return (decoded,) | |
return DecoderOutput(sample=decoded) | |
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
blend_extent = min(a.shape[3], b.shape[3], blend_extent) | |
for y in range(blend_extent): | |
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * ( | |
y / blend_extent | |
) | |
return b | |
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
blend_extent = min(a.shape[4], b.shape[4], blend_extent) | |
for x in range(blend_extent): | |
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * ( | |
x / blend_extent | |
) | |
return b | |
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: | |
r""" | |
Decode a batch of images using a tiled decoder. | |
Args: | |
z (`torch.Tensor`): Input batch of latent vectors. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.vae.DecoderOutput`] or `tuple`: | |
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is | |
returned. | |
""" | |
# Rough memory assessment: | |
# - In CogVideoX-2B, there are a total of 24 CausalConv3d layers. | |
# - The biggest intermediate dimensions are: [1, 128, 9, 480, 720]. | |
# - Assume fp16 (2 bytes per value). | |
# Memory required: 1 * 128 * 9 * 480 * 720 * 24 * 2 / 1024**3 = 17.8 GB | |
# | |
# Memory assessment when using tiling: | |
# - Assume everything as above but now HxW is 240x360 by tiling in half | |
# Memory required: 1 * 128 * 9 * 240 * 360 * 24 * 2 / 1024**3 = 4.5 GB | |
batch_size, num_channels, num_frames, height, width = z.shape | |
overlap_height = int(self.tile_latent_min_height * (1 - self.tile_overlap_factor_height)) | |
overlap_width = int(self.tile_latent_min_width * (1 - self.tile_overlap_factor_width)) | |
blend_extent_height = int(self.tile_sample_min_height * self.tile_overlap_factor_height) | |
blend_extent_width = int(self.tile_sample_min_width * self.tile_overlap_factor_width) | |
row_limit_height = self.tile_sample_min_height - blend_extent_height | |
row_limit_width = self.tile_sample_min_width - blend_extent_width | |
frame_batch_size = self.num_latent_frames_batch_size | |
# Split z into overlapping tiles and decode them separately. | |
# The tiles have an overlap to avoid seams between tiles. | |
rows = [] | |
for i in range(0, height, overlap_height): | |
row = [] | |
for j in range(0, width, overlap_width): | |
num_batches = max(num_frames // frame_batch_size, 1) | |
conv_cache = None | |
time = [] | |
for k in range(num_batches): | |
remaining_frames = num_frames % frame_batch_size | |
start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames) | |
end_frame = frame_batch_size * (k + 1) + remaining_frames | |
tile = z[ | |
:, | |
:, | |
start_frame:end_frame, | |
i : i + self.tile_latent_min_height, | |
j : j + self.tile_latent_min_width, | |
] | |
tile, conv_cache = self.decoder(tile, conv_cache=conv_cache) | |
time.append(tile) | |
row.append(torch.cat(time, dim=2)) | |
rows.append(row) | |
result_rows = [] | |
for i, row in enumerate(rows): | |
result_row = [] | |
for j, tile in enumerate(row): | |
# blend the above tile and the left tile | |
# to the current tile and add the current tile to the result row | |
if i > 0: | |
tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height) | |
if j > 0: | |
tile = self.blend_h(row[j - 1], tile, blend_extent_width) | |
result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width]) | |
result_rows.append(torch.cat(result_row, dim=4)) | |
dec = torch.cat(result_rows, dim=3) | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) | |
def forward( | |
self, | |
z: torch.Tensor, | |
return_dict: bool = True, | |
) -> Union[torch.Tensor, torch.Tensor]: | |
dec = self.decode(z).sample | |
if not return_dict: | |
return (dec,) | |
return DecoderOutput(sample=dec) |