Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
import time | |
import gradio as gr | |
def get_visual_qa_tab(): | |
salesforce_model_name = "Salesforce/blip-vqa-base" | |
salesforce_pipe = pipeline("visual-question-answering", model=salesforce_model_name) | |
dandelin_model_name = "dandelin/vilt-b32-finetuned-vqa" | |
dandelin_pipe = pipeline("visual-question-answering", model=dandelin_model_name) | |
pipe_map = { | |
salesforce_model_name: salesforce_pipe, | |
dandelin_model_name: dandelin_pipe | |
} | |
def gradio_process(model_name, image, text): | |
pipe = pipe_map[model_name] | |
start = time.time() | |
output = pipe(image, text) | |
end = time.time() | |
time_spent = end - start | |
result = output[0]['answer'] | |
return [result, time_spent] | |
with gr.TabItem("Visual Q&A") as visual_qa_tab: | |
gr.Markdown("# Visual Question & Answering") | |
with gr.Row(): | |
with gr.Column(): | |
# Input components | |
input_image = gr.Image(label="Upload Image", type="pil") | |
input_text = gr.Textbox(label="Question") | |
model_selector = gr.Dropdown([salesforce_model_name, dandelin_model_name], | |
label = "Select Model") | |
# Process button | |
process_btn = gr.Button("Generate answer") | |
with gr.Column(): | |
# Output components | |
elapsed_result = gr.Textbox(label="Seconds elapsed", lines=1) | |
output_text = gr.Textbox(label="Answer") | |
# Connect the input components to the processing function | |
process_btn.click( | |
fn=gradio_process, | |
inputs=[ | |
model_selector, | |
input_image, | |
input_text | |
], | |
outputs=[output_text, elapsed_result] | |
) | |
return visual_qa_tab | |