Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- cog.py +180 -0
- packages.txt +1 -0
- requirements.txt +23 -0
- test_infer_batch.py +202 -0
- test_infer_batch.sh +13 -0
- test_infer_single.py +162 -0
cog.py
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Prediction interface for Cog ⚙️
|
| 2 |
+
# https://cog.run/python
|
| 3 |
+
|
| 4 |
+
from cog import BasePredictor, Input, Path
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import re
|
| 8 |
+
import torch
|
| 9 |
+
import torchaudio
|
| 10 |
+
import numpy as np
|
| 11 |
+
import tempfile
|
| 12 |
+
from einops import rearrange
|
| 13 |
+
from ema_pytorch import EMA
|
| 14 |
+
from vocos import Vocos
|
| 15 |
+
from pydub import AudioSegment
|
| 16 |
+
from model import CFM, UNetT, DiT, MMDiT
|
| 17 |
+
from cached_path import cached_path
|
| 18 |
+
from model.utils import (
|
| 19 |
+
get_tokenizer,
|
| 20 |
+
convert_char_to_pinyin,
|
| 21 |
+
save_spectrogram,
|
| 22 |
+
)
|
| 23 |
+
from transformers import pipeline
|
| 24 |
+
import librosa
|
| 25 |
+
|
| 26 |
+
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
| 27 |
+
|
| 28 |
+
target_sample_rate = 24000
|
| 29 |
+
n_mel_channels = 100
|
| 30 |
+
hop_length = 256
|
| 31 |
+
target_rms = 0.1
|
| 32 |
+
nfe_step = 32 # 16, 32
|
| 33 |
+
cfg_strength = 2.0
|
| 34 |
+
ode_method = 'euler'
|
| 35 |
+
sway_sampling_coef = -1.0
|
| 36 |
+
speed = 1.0
|
| 37 |
+
# fix_duration = 27 # None or float (duration in seconds)
|
| 38 |
+
fix_duration = None
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class Predictor(BasePredictor):
|
| 42 |
+
def load_model(exp_name, model_cls, model_cfg, ckpt_step):
|
| 43 |
+
checkpoint = torch.load(str(cached_path(f"hf://SWivid/F5-TTS/{exp_name}/model_{ckpt_step}.pt")), map_location=device)
|
| 44 |
+
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
|
| 45 |
+
model = CFM(
|
| 46 |
+
transformer=model_cls(
|
| 47 |
+
**model_cfg,
|
| 48 |
+
text_num_embeds=vocab_size,
|
| 49 |
+
mel_dim=n_mel_channels
|
| 50 |
+
),
|
| 51 |
+
mel_spec_kwargs=dict(
|
| 52 |
+
target_sample_rate=target_sample_rate,
|
| 53 |
+
n_mel_channels=n_mel_channels,
|
| 54 |
+
hop_length=hop_length,
|
| 55 |
+
),
|
| 56 |
+
odeint_kwargs=dict(
|
| 57 |
+
method=ode_method,
|
| 58 |
+
),
|
| 59 |
+
vocab_char_map=vocab_char_map,
|
| 60 |
+
).to(device)
|
| 61 |
+
|
| 62 |
+
ema_model = EMA(model, include_online_model=False).to(device)
|
| 63 |
+
ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
|
| 64 |
+
ema_model.copy_params_from_ema_to_model()
|
| 65 |
+
|
| 66 |
+
return ema_model, model
|
| 67 |
+
def setup(self) -> None:
|
| 68 |
+
"""Load the model into memory to make running multiple predictions efficient"""
|
| 69 |
+
# self.model = torch.load("./weights.pth")
|
| 70 |
+
print("Loading Whisper model...")
|
| 71 |
+
self.pipe = pipeline(
|
| 72 |
+
"automatic-speech-recognition",
|
| 73 |
+
model="openai/whisper-large-v3-turbo",
|
| 74 |
+
torch_dtype=torch.float16,
|
| 75 |
+
device=device,
|
| 76 |
+
)
|
| 77 |
+
print("Loading F5-TTS model...")
|
| 78 |
+
|
| 79 |
+
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
| 80 |
+
self.F5TTS_ema_model, self.F5TTS_base_model = self.load_model("F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def predict(
|
| 84 |
+
self,
|
| 85 |
+
gen_text: str = Input(description="Text to generate"),
|
| 86 |
+
ref_audio_orig: Path = Input(description="Reference audio"),
|
| 87 |
+
remove_silence: bool = Input(description="Remove silences", default=True),
|
| 88 |
+
) -> Path:
|
| 89 |
+
"""Run a single prediction on the model"""
|
| 90 |
+
model_choice = "F5-TTS"
|
| 91 |
+
print(gen_text)
|
| 92 |
+
if len(gen_text) > 200:
|
| 93 |
+
raise gr.Error("Please keep your text under 200 chars.")
|
| 94 |
+
gr.Info("Converting audio...")
|
| 95 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
| 96 |
+
aseg = AudioSegment.from_file(ref_audio_orig)
|
| 97 |
+
audio_duration = len(aseg)
|
| 98 |
+
if audio_duration > 15000:
|
| 99 |
+
gr.Warning("Audio is over 15s, clipping to only first 15s.")
|
| 100 |
+
aseg = aseg[:15000]
|
| 101 |
+
aseg.export(f.name, format="wav")
|
| 102 |
+
ref_audio = f.name
|
| 103 |
+
ema_model = self.F5TTS_ema_model
|
| 104 |
+
base_model = self.F5TTS_base_model
|
| 105 |
+
|
| 106 |
+
if not ref_text.strip():
|
| 107 |
+
gr.Info("No reference text provided, transcribing reference audio...")
|
| 108 |
+
ref_text = outputs = self.pipe(
|
| 109 |
+
ref_audio,
|
| 110 |
+
chunk_length_s=30,
|
| 111 |
+
batch_size=128,
|
| 112 |
+
generate_kwargs={"task": "transcribe"},
|
| 113 |
+
return_timestamps=False,
|
| 114 |
+
)['text'].strip()
|
| 115 |
+
gr.Info("Finished transcription")
|
| 116 |
+
else:
|
| 117 |
+
gr.Info("Using custom reference text...")
|
| 118 |
+
audio, sr = torchaudio.load(ref_audio)
|
| 119 |
+
|
| 120 |
+
rms = torch.sqrt(torch.mean(torch.square(audio)))
|
| 121 |
+
if rms < target_rms:
|
| 122 |
+
audio = audio * target_rms / rms
|
| 123 |
+
if sr != target_sample_rate:
|
| 124 |
+
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
|
| 125 |
+
audio = resampler(audio)
|
| 126 |
+
audio = audio.to(device)
|
| 127 |
+
|
| 128 |
+
# Prepare the text
|
| 129 |
+
text_list = [ref_text + gen_text]
|
| 130 |
+
final_text_list = convert_char_to_pinyin(text_list)
|
| 131 |
+
|
| 132 |
+
# Calculate duration
|
| 133 |
+
ref_audio_len = audio.shape[-1] // hop_length
|
| 134 |
+
# if fix_duration is not None:
|
| 135 |
+
# duration = int(fix_duration * target_sample_rate / hop_length)
|
| 136 |
+
# else:
|
| 137 |
+
zh_pause_punc = r"。,、;:?!"
|
| 138 |
+
ref_text_len = len(ref_text) + len(re.findall(zh_pause_punc, ref_text))
|
| 139 |
+
gen_text_len = len(gen_text) + len(re.findall(zh_pause_punc, gen_text))
|
| 140 |
+
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
|
| 141 |
+
|
| 142 |
+
# inference
|
| 143 |
+
gr.Info(f"Generating audio using F5-TTS")
|
| 144 |
+
with torch.inference_mode():
|
| 145 |
+
generated, _ = base_model.sample(
|
| 146 |
+
cond=audio,
|
| 147 |
+
text=final_text_list,
|
| 148 |
+
duration=duration,
|
| 149 |
+
steps=nfe_step,
|
| 150 |
+
cfg_strength=cfg_strength,
|
| 151 |
+
sway_sampling_coef=sway_sampling_coef,
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
generated = generated[:, ref_audio_len:, :]
|
| 155 |
+
generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
|
| 156 |
+
gr.Info("Running vocoder")
|
| 157 |
+
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
| 158 |
+
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
| 159 |
+
if rms < target_rms:
|
| 160 |
+
generated_wave = generated_wave * rms / target_rms
|
| 161 |
+
|
| 162 |
+
# wav -> numpy
|
| 163 |
+
generated_wave = generated_wave.squeeze().cpu().numpy()
|
| 164 |
+
|
| 165 |
+
if remove_silence:
|
| 166 |
+
gr.Info("Removing audio silences... This may take a moment")
|
| 167 |
+
non_silent_intervals = librosa.effects.split(generated_wave, top_db=30)
|
| 168 |
+
non_silent_wave = np.array([])
|
| 169 |
+
for interval in non_silent_intervals:
|
| 170 |
+
start, end = interval
|
| 171 |
+
non_silent_wave = np.concatenate([non_silent_wave, generated_wave[start:end]])
|
| 172 |
+
generated_wave = non_silent_wave
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
# spectogram
|
| 176 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_wav:
|
| 177 |
+
wav_path = tmp_wav.name
|
| 178 |
+
torchaudio.save(wav_path, torch.tensor(generated_wave), target_sample_rate)
|
| 179 |
+
|
| 180 |
+
return wav_path
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
requirements.txt
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accelerate>=0.33.0
|
| 2 |
+
cached_path
|
| 3 |
+
click
|
| 4 |
+
datasets
|
| 5 |
+
einops>=0.8.0
|
| 6 |
+
einx>=0.3.0
|
| 7 |
+
ema_pytorch>=0.5.2
|
| 8 |
+
gradio
|
| 9 |
+
jieba
|
| 10 |
+
librosa
|
| 11 |
+
matplotlib
|
| 12 |
+
numpy<=1.26.4
|
| 13 |
+
pydub
|
| 14 |
+
pypinyin
|
| 15 |
+
safetensors
|
| 16 |
+
soundfile
|
| 17 |
+
tomli
|
| 18 |
+
torchdiffeq
|
| 19 |
+
tqdm>=4.65.0
|
| 20 |
+
transformers
|
| 21 |
+
vocos
|
| 22 |
+
wandb
|
| 23 |
+
x_transformers>=1.31.14
|
test_infer_batch.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import random
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
import argparse
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torchaudio
|
| 9 |
+
from accelerate import Accelerator
|
| 10 |
+
from einops import rearrange
|
| 11 |
+
from ema_pytorch import EMA
|
| 12 |
+
from vocos import Vocos
|
| 13 |
+
|
| 14 |
+
from model import CFM, UNetT, DiT
|
| 15 |
+
from model.utils import (
|
| 16 |
+
get_tokenizer,
|
| 17 |
+
get_seedtts_testset_metainfo,
|
| 18 |
+
get_librispeech_test_clean_metainfo,
|
| 19 |
+
get_inference_prompt,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
accelerator = Accelerator()
|
| 23 |
+
device = f"cuda:{accelerator.process_index}"
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# --------------------- Dataset Settings -------------------- #
|
| 27 |
+
|
| 28 |
+
target_sample_rate = 24000
|
| 29 |
+
n_mel_channels = 100
|
| 30 |
+
hop_length = 256
|
| 31 |
+
target_rms = 0.1
|
| 32 |
+
|
| 33 |
+
tokenizer = "pinyin"
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# ---------------------- infer setting ---------------------- #
|
| 37 |
+
|
| 38 |
+
parser = argparse.ArgumentParser(description="batch inference")
|
| 39 |
+
|
| 40 |
+
parser.add_argument('-s', '--seed', default=None, type=int)
|
| 41 |
+
parser.add_argument('-d', '--dataset', default="Emilia_ZH_EN")
|
| 42 |
+
parser.add_argument('-n', '--expname', required=True)
|
| 43 |
+
parser.add_argument('-c', '--ckptstep', default=1200000, type=int)
|
| 44 |
+
|
| 45 |
+
parser.add_argument('-nfe', '--nfestep', default=32, type=int)
|
| 46 |
+
parser.add_argument('-o', '--odemethod', default="euler")
|
| 47 |
+
parser.add_argument('-ss', '--swaysampling', default=-1, type=float)
|
| 48 |
+
|
| 49 |
+
parser.add_argument('-t', '--testset', required=True)
|
| 50 |
+
|
| 51 |
+
args = parser.parse_args()
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
seed = args.seed
|
| 55 |
+
dataset_name = args.dataset
|
| 56 |
+
exp_name = args.expname
|
| 57 |
+
ckpt_step = args.ckptstep
|
| 58 |
+
checkpoint = torch.load(f"ckpts/{exp_name}/model_{ckpt_step}.pt", map_location=device)
|
| 59 |
+
|
| 60 |
+
nfe_step = args.nfestep
|
| 61 |
+
ode_method = args.odemethod
|
| 62 |
+
sway_sampling_coef = args.swaysampling
|
| 63 |
+
|
| 64 |
+
testset = args.testset
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
infer_batch_size = 1 # max frames. 1 for ddp single inference (recommended)
|
| 68 |
+
cfg_strength = 2.
|
| 69 |
+
speed = 1.
|
| 70 |
+
use_truth_duration = False
|
| 71 |
+
no_ref_audio = False
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
if exp_name == "F5TTS_Base":
|
| 75 |
+
model_cls = DiT
|
| 76 |
+
model_cfg = dict(dim = 1024, depth = 22, heads = 16, ff_mult = 2, text_dim = 512, conv_layers = 4)
|
| 77 |
+
|
| 78 |
+
elif exp_name == "E2TTS_Base":
|
| 79 |
+
model_cls = UNetT
|
| 80 |
+
model_cfg = dict(dim = 1024, depth = 24, heads = 16, ff_mult = 4)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
if testset == "ls_pc_test_clean":
|
| 84 |
+
metalst = "data/librispeech_pc_test_clean_cross_sentence.lst"
|
| 85 |
+
librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean" # test-clean path
|
| 86 |
+
metainfo = get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path)
|
| 87 |
+
|
| 88 |
+
elif testset == "seedtts_test_zh":
|
| 89 |
+
metalst = "data/seedtts_testset/zh/meta.lst"
|
| 90 |
+
metainfo = get_seedtts_testset_metainfo(metalst)
|
| 91 |
+
|
| 92 |
+
elif testset == "seedtts_test_en":
|
| 93 |
+
metalst = "data/seedtts_testset/en/meta.lst"
|
| 94 |
+
metainfo = get_seedtts_testset_metainfo(metalst)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
# path to save genereted wavs
|
| 98 |
+
if seed is None: seed = random.randint(-10000, 10000)
|
| 99 |
+
output_dir = f"results/{exp_name}_{ckpt_step}/{testset}/" \
|
| 100 |
+
f"seed{seed}_{ode_method}_nfe{nfe_step}" \
|
| 101 |
+
f"{f'_ss{sway_sampling_coef}' if sway_sampling_coef else ''}" \
|
| 102 |
+
f"_cfg{cfg_strength}_speed{speed}" \
|
| 103 |
+
f"{'_gt-dur' if use_truth_duration else ''}" \
|
| 104 |
+
f"{'_no-ref-audio' if no_ref_audio else ''}"
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
# -------------------------------------------------#
|
| 108 |
+
|
| 109 |
+
use_ema = True
|
| 110 |
+
|
| 111 |
+
prompts_all = get_inference_prompt(
|
| 112 |
+
metainfo,
|
| 113 |
+
speed = speed,
|
| 114 |
+
tokenizer = tokenizer,
|
| 115 |
+
target_sample_rate = target_sample_rate,
|
| 116 |
+
n_mel_channels = n_mel_channels,
|
| 117 |
+
hop_length = hop_length,
|
| 118 |
+
target_rms = target_rms,
|
| 119 |
+
use_truth_duration = use_truth_duration,
|
| 120 |
+
infer_batch_size = infer_batch_size,
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
# Vocoder model
|
| 124 |
+
local = False
|
| 125 |
+
if local:
|
| 126 |
+
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
|
| 127 |
+
vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
|
| 128 |
+
state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", map_location=device)
|
| 129 |
+
vocos.load_state_dict(state_dict)
|
| 130 |
+
vocos.eval()
|
| 131 |
+
else:
|
| 132 |
+
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
| 133 |
+
|
| 134 |
+
# Tokenizer
|
| 135 |
+
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
|
| 136 |
+
|
| 137 |
+
# Model
|
| 138 |
+
model = CFM(
|
| 139 |
+
transformer = model_cls(
|
| 140 |
+
**model_cfg,
|
| 141 |
+
text_num_embeds = vocab_size,
|
| 142 |
+
mel_dim = n_mel_channels
|
| 143 |
+
),
|
| 144 |
+
mel_spec_kwargs = dict(
|
| 145 |
+
target_sample_rate = target_sample_rate,
|
| 146 |
+
n_mel_channels = n_mel_channels,
|
| 147 |
+
hop_length = hop_length,
|
| 148 |
+
),
|
| 149 |
+
odeint_kwargs = dict(
|
| 150 |
+
method = ode_method,
|
| 151 |
+
),
|
| 152 |
+
vocab_char_map = vocab_char_map,
|
| 153 |
+
).to(device)
|
| 154 |
+
|
| 155 |
+
if use_ema == True:
|
| 156 |
+
ema_model = EMA(model, include_online_model = False).to(device)
|
| 157 |
+
ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
|
| 158 |
+
ema_model.copy_params_from_ema_to_model()
|
| 159 |
+
else:
|
| 160 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 161 |
+
|
| 162 |
+
if not os.path.exists(output_dir) and accelerator.is_main_process:
|
| 163 |
+
os.makedirs(output_dir)
|
| 164 |
+
|
| 165 |
+
# start batch inference
|
| 166 |
+
accelerator.wait_for_everyone()
|
| 167 |
+
start = time.time()
|
| 168 |
+
|
| 169 |
+
with accelerator.split_between_processes(prompts_all) as prompts:
|
| 170 |
+
|
| 171 |
+
for prompt in tqdm(prompts, disable=not accelerator.is_local_main_process):
|
| 172 |
+
utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = prompt
|
| 173 |
+
ref_mels = ref_mels.to(device)
|
| 174 |
+
ref_mel_lens = torch.tensor(ref_mel_lens, dtype = torch.long).to(device)
|
| 175 |
+
total_mel_lens = torch.tensor(total_mel_lens, dtype = torch.long).to(device)
|
| 176 |
+
|
| 177 |
+
# Inference
|
| 178 |
+
with torch.inference_mode():
|
| 179 |
+
generated, _ = model.sample(
|
| 180 |
+
cond = ref_mels,
|
| 181 |
+
text = final_text_list,
|
| 182 |
+
duration = total_mel_lens,
|
| 183 |
+
lens = ref_mel_lens,
|
| 184 |
+
steps = nfe_step,
|
| 185 |
+
cfg_strength = cfg_strength,
|
| 186 |
+
sway_sampling_coef = sway_sampling_coef,
|
| 187 |
+
no_ref_audio = no_ref_audio,
|
| 188 |
+
seed = seed,
|
| 189 |
+
)
|
| 190 |
+
# Final result
|
| 191 |
+
for i, gen in enumerate(generated):
|
| 192 |
+
gen = gen[ref_mel_lens[i]:total_mel_lens[i], :].unsqueeze(0)
|
| 193 |
+
gen_mel_spec = rearrange(gen, '1 n d -> 1 d n')
|
| 194 |
+
generated_wave = vocos.decode(gen_mel_spec.cpu())
|
| 195 |
+
if ref_rms_list[i] < target_rms:
|
| 196 |
+
generated_wave = generated_wave * ref_rms_list[i] / target_rms
|
| 197 |
+
torchaudio.save(f"{output_dir}/{utts[i]}.wav", generated_wave, target_sample_rate)
|
| 198 |
+
|
| 199 |
+
accelerator.wait_for_everyone()
|
| 200 |
+
if accelerator.is_main_process:
|
| 201 |
+
timediff = time.time() - start
|
| 202 |
+
print(f"Done batch inference in {timediff / 60 :.2f} minutes.")
|
test_infer_batch.sh
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
# e.g. F5-TTS, 16 NFE
|
| 4 |
+
accelerate launch test_infer_batch.py -n "F5TTS_Base" -t "seedtts_test_zh" -nfe 16
|
| 5 |
+
accelerate launch test_infer_batch.py -n "F5TTS_Base" -t "seedtts_test_en" -nfe 16
|
| 6 |
+
accelerate launch test_infer_batch.py -n "F5TTS_Base" -t "ls_pc_test_clean" -nfe 16
|
| 7 |
+
|
| 8 |
+
# e.g. Vanilla E2 TTS, 32 NFE
|
| 9 |
+
accelerate launch test_infer_batch.py -n "E2TTS_Base" -t "seedtts_test_zh" -o "midpoint" -ss 0
|
| 10 |
+
accelerate launch test_infer_batch.py -n "E2TTS_Base" -t "seedtts_test_en" -o "midpoint" -ss 0
|
| 11 |
+
accelerate launch test_infer_batch.py -n "E2TTS_Base" -t "ls_pc_test_clean" -o "midpoint" -ss 0
|
| 12 |
+
|
| 13 |
+
# etc.
|
test_infer_single.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torchaudio
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
from ema_pytorch import EMA
|
| 8 |
+
from vocos import Vocos
|
| 9 |
+
|
| 10 |
+
from model import CFM, UNetT, DiT, MMDiT
|
| 11 |
+
from model.utils import (
|
| 12 |
+
get_tokenizer,
|
| 13 |
+
convert_char_to_pinyin,
|
| 14 |
+
save_spectrogram,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# --------------------- Dataset Settings -------------------- #
|
| 21 |
+
|
| 22 |
+
target_sample_rate = 24000
|
| 23 |
+
n_mel_channels = 100
|
| 24 |
+
hop_length = 256
|
| 25 |
+
target_rms = 0.1
|
| 26 |
+
|
| 27 |
+
tokenizer = "pinyin"
|
| 28 |
+
dataset_name = "Emilia_ZH_EN"
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# ---------------------- infer setting ---------------------- #
|
| 32 |
+
|
| 33 |
+
seed = None # int | None
|
| 34 |
+
|
| 35 |
+
exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base
|
| 36 |
+
ckpt_step = 1200000
|
| 37 |
+
|
| 38 |
+
nfe_step = 32 # 16, 32
|
| 39 |
+
cfg_strength = 2.
|
| 40 |
+
ode_method = 'euler' # euler | midpoint
|
| 41 |
+
sway_sampling_coef = -1.
|
| 42 |
+
speed = 1.
|
| 43 |
+
fix_duration = 27 # None (will linear estimate. if code-switched, consider fix) | float (total in seconds, include ref audio)
|
| 44 |
+
|
| 45 |
+
if exp_name == "F5TTS_Base":
|
| 46 |
+
model_cls = DiT
|
| 47 |
+
model_cfg = dict(dim = 1024, depth = 22, heads = 16, ff_mult = 2, text_dim = 512, conv_layers = 4)
|
| 48 |
+
|
| 49 |
+
elif exp_name == "E2TTS_Base":
|
| 50 |
+
model_cls = UNetT
|
| 51 |
+
model_cfg = dict(dim = 1024, depth = 24, heads = 16, ff_mult = 4)
|
| 52 |
+
|
| 53 |
+
checkpoint = torch.load(f"ckpts/{exp_name}/model_{ckpt_step}.pt", map_location=device)
|
| 54 |
+
output_dir = "tests"
|
| 55 |
+
|
| 56 |
+
ref_audio = "tests/ref_audio/test_en_1_ref_short.wav"
|
| 57 |
+
ref_text = "Some call me nature, others call me mother nature."
|
| 58 |
+
gen_text = "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences."
|
| 59 |
+
|
| 60 |
+
# ref_audio = "tests/ref_audio/test_zh_1_ref_short.wav"
|
| 61 |
+
# ref_text = "对,这就是我,万人敬仰的太乙真人。"
|
| 62 |
+
# gen_text = "突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:\"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?\""
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# -------------------------------------------------#
|
| 66 |
+
|
| 67 |
+
use_ema = True
|
| 68 |
+
|
| 69 |
+
if not os.path.exists(output_dir):
|
| 70 |
+
os.makedirs(output_dir)
|
| 71 |
+
|
| 72 |
+
# Vocoder model
|
| 73 |
+
local = False
|
| 74 |
+
if local:
|
| 75 |
+
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
|
| 76 |
+
vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
|
| 77 |
+
state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", map_location=device)
|
| 78 |
+
vocos.load_state_dict(state_dict)
|
| 79 |
+
vocos.eval()
|
| 80 |
+
else:
|
| 81 |
+
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
| 82 |
+
|
| 83 |
+
# Tokenizer
|
| 84 |
+
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
|
| 85 |
+
|
| 86 |
+
# Model
|
| 87 |
+
model = CFM(
|
| 88 |
+
transformer = model_cls(
|
| 89 |
+
**model_cfg,
|
| 90 |
+
text_num_embeds = vocab_size,
|
| 91 |
+
mel_dim = n_mel_channels
|
| 92 |
+
),
|
| 93 |
+
mel_spec_kwargs = dict(
|
| 94 |
+
target_sample_rate = target_sample_rate,
|
| 95 |
+
n_mel_channels = n_mel_channels,
|
| 96 |
+
hop_length = hop_length,
|
| 97 |
+
),
|
| 98 |
+
odeint_kwargs = dict(
|
| 99 |
+
method = ode_method,
|
| 100 |
+
),
|
| 101 |
+
vocab_char_map = vocab_char_map,
|
| 102 |
+
).to(device)
|
| 103 |
+
|
| 104 |
+
if use_ema == True:
|
| 105 |
+
ema_model = EMA(model, include_online_model = False).to(device)
|
| 106 |
+
ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
|
| 107 |
+
ema_model.copy_params_from_ema_to_model()
|
| 108 |
+
else:
|
| 109 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 110 |
+
|
| 111 |
+
# Audio
|
| 112 |
+
audio, sr = torchaudio.load(ref_audio)
|
| 113 |
+
rms = torch.sqrt(torch.mean(torch.square(audio)))
|
| 114 |
+
if rms < target_rms:
|
| 115 |
+
audio = audio * target_rms / rms
|
| 116 |
+
if sr != target_sample_rate:
|
| 117 |
+
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
|
| 118 |
+
audio = resampler(audio)
|
| 119 |
+
audio = audio.to(device)
|
| 120 |
+
|
| 121 |
+
# Text
|
| 122 |
+
text_list = [ref_text + gen_text]
|
| 123 |
+
if tokenizer == "pinyin":
|
| 124 |
+
final_text_list = convert_char_to_pinyin(text_list)
|
| 125 |
+
else:
|
| 126 |
+
final_text_list = [text_list]
|
| 127 |
+
print(f"text : {text_list}")
|
| 128 |
+
print(f"pinyin: {final_text_list}")
|
| 129 |
+
|
| 130 |
+
# Duration
|
| 131 |
+
ref_audio_len = audio.shape[-1] // hop_length
|
| 132 |
+
if fix_duration is not None:
|
| 133 |
+
duration = int(fix_duration * target_sample_rate / hop_length)
|
| 134 |
+
else: # simple linear scale calcul
|
| 135 |
+
zh_pause_punc = r"。,、;:?!"
|
| 136 |
+
ref_text_len = len(ref_text) + len(re.findall(zh_pause_punc, ref_text))
|
| 137 |
+
gen_text_len = len(gen_text) + len(re.findall(zh_pause_punc, gen_text))
|
| 138 |
+
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
|
| 139 |
+
|
| 140 |
+
# Inference
|
| 141 |
+
with torch.inference_mode():
|
| 142 |
+
generated, trajectory = model.sample(
|
| 143 |
+
cond = audio,
|
| 144 |
+
text = final_text_list,
|
| 145 |
+
duration = duration,
|
| 146 |
+
steps = nfe_step,
|
| 147 |
+
cfg_strength = cfg_strength,
|
| 148 |
+
sway_sampling_coef = sway_sampling_coef,
|
| 149 |
+
seed = seed,
|
| 150 |
+
)
|
| 151 |
+
print(f"Generated mel: {generated.shape}")
|
| 152 |
+
|
| 153 |
+
# Final result
|
| 154 |
+
generated = generated[:, ref_audio_len:, :]
|
| 155 |
+
generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
|
| 156 |
+
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
| 157 |
+
if rms < target_rms:
|
| 158 |
+
generated_wave = generated_wave * rms / target_rms
|
| 159 |
+
|
| 160 |
+
save_spectrogram(generated_mel_spec[0].cpu().numpy(), f"{output_dir}/test_single.png")
|
| 161 |
+
torchaudio.save(f"{output_dir}/test_single.wav", generated_wave, target_sample_rate)
|
| 162 |
+
print(f"Generated wav: {generated_wave.shape}")
|