Spaces:
Running
Running
File size: 5,232 Bytes
27e2770 1d11011 6509a73 1d11011 27e2770 6509a73 97ca4c0 27e2770 6509a73 79b6488 6509a73 79b6488 b2a3d53 6509a73 79b6488 dfecb5b 1d11011 dfecb5b 27e2770 1d11011 6509a73 1d11011 3380f3c 743e6bd 3380f3c 1d11011 6509a73 79b6488 6509a73 b2a3d53 6509a73 b2a3d53 6509a73 dfecb5b 27e2770 cdbbabd 97ca4c0 dfecb5b 6509a73 dfecb5b 6509a73 4bde526 6509a73 b2a3d53 dfecb5b 79b6488 b2a3d53 79b6488 1d25e2a dfecb5b 79b6488 b2a3d53 94ce4d7 b092b28 dfecb5b 6509a73 b2a3d53 79b6488 b2a3d53 dfecb5b b2a3d53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import gradio as gr
from concurrency import execute_multithread
from get_index import get_engines
from protein_viz import get_gene_name, get_protein_name, render_html
index_repo = "ronig/siamese_protein_index"
model_repo = "ronig/protein_search_engine"
engines = get_engines(index_repo, model_repo)
available_indexes = list(engines.keys())
app_description = """
# Protein Binding Search Engine
This application enables a quick protein-peptide binding search based on sequences.
You can use it to search the full [PDB](https://www.rcsb.org/) database or in a specific organism genome.
"""
def search_and_display(seq, n_res, index_selection):
n_res = int(limit_n_results(n_res))
engine = engines[index_selection]
search_res = engine.search_by_sequence(seq, n=n_res)
results_options = update_dropdown_menu(search_res)
formatted_search_results = format_search_results(search_res)
return formatted_search_results, results_options
def limit_n_results(n):
return max(min(n, 20), 1)
def update_dropdown_menu(search_res):
choices = []
for row in search_res:
if "pdb_name" in row and "chain_id" in row:
choice = ".".join([row["pdb_name"], row["chain_id"]])
choices.append(choice)
if choices:
update = gr.Dropdown.update(
choices=choices, interactive=True, value=choices[0], visible=True
)
else:
update = gr.Dropdown.update(
choices=choices, interactive=True, visible=False, value=None
)
return update
def format_search_results(raw_search_results):
formatted_search_results = {}
for key, value in execute_multithread(
func=format_search_result,
inputs=({"raw_result": res} for res in raw_search_results),
n_workers=len(raw_search_results),
):
formatted_search_results[key] = value
return formatted_search_results
def format_search_result(raw_result):
is_pdb = "pdb_name" in raw_result
if is_pdb:
key, value = parse_pdb_search_result(raw_result)
else:
key, value = parse_fasta_search_result(raw_result)
return key, value
def parse_fasta_search_result(raw_result):
gene = parse_gene_from_fasta_entry(raw_result["description"])
key = f"Gene: {gene}"
value = raw_result["score"]
return key, value
def parse_pdb_search_result(raw_result):
prot = raw_result["pdb_name"]
chain = raw_result["chain_id"]
value = raw_result["score"]
gene_name, species = get_gene_name(pdb_id=prot, chain_id=chain)
key = f"PDB: {prot}.{chain}"
if gene_name is not None:
key += f" | Gene: {gene_name} | Organism: {species}"
return key, value
def parse_gene_from_fasta_entry(description):
after = description.split("GN=")[1]
gene = after.split(" ")[0]
return gene
def switch_viz(new_choice):
if new_choice is None:
html = ""
title_update = gr.Markdown.update(visible=False)
description_update = gr.Markdown.update(value=None, visible=False)
else:
choice_parts = new_choice.split(".")
pdb_id, chain = choice_parts[0], choice_parts[1]
title_update = gr.Markdown.update(visible=True)
protein_name = get_protein_name(pdb_id)
new_value = f"""**PDB Title**: {protein_name}"""
description_update = gr.Markdown.update(value=new_value, visible=True)
html = render_html(pdb_id=pdb_id, chain=chain)
return html, title_update, description_update
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown(app_description)
with gr.Column():
with gr.Row():
with gr.Column():
seq_input = gr.Textbox(value="APTMPPPLPP", label="Input Sequence")
n_results = gr.Number(5, label="N Results")
index_selector = gr.Dropdown(
choices=available_indexes,
value="Pdb",
multiselect=False,
visible=True,
label="Index",
)
search_button = gr.Button("Search", variant="primary")
search_results = gr.Label(num_top_classes=20, label="Search Results")
viz_header = gr.Markdown("## Visualization", visible=False)
results_selector = gr.Dropdown(
choices=[],
multiselect=False,
visible=False,
label="Visualized Search Result",
)
viz_body = gr.Markdown("", visible=False)
protein_viz = gr.HTML(
value=render_html(pdb_id=None, chain=None),
label="Protein Visualization",
)
gr.Examples(
["APTMPPPLPP", "KFLIYQMECSTMIFGL", "PHFAMPPIHEDHLE", "AEERIISLD"],
inputs=[seq_input],
)
search_button.click(
search_and_display,
inputs=[seq_input, n_results, index_selector],
outputs=[search_results, results_selector],
)
results_selector.change(
switch_viz, inputs=results_selector, outputs=[protein_viz, viz_header, viz_body]
)
if __name__ == "__main__":
demo.launch()
|