Spaces:
Running
Running
File size: 5,903 Bytes
33eb5d4 27e2770 6509a73 33eb5d4 27e2770 d48c285 27e2770 6509a73 97ca4c0 e1f535f 33eb5d4 e103bde 27e2770 1694358 33eb5d4 e103bde 33eb5d4 6509a73 33eb5d4 79b6488 e103bde 79b6488 5e7a3eb 79b6488 33eb5d4 4a6ff7a 33eb5d4 4a6ff7a 33eb5d4 b2a3d53 33eb5d4 6509a73 33eb5d4 6509a73 79b6488 6509a73 1d11011 1694358 3380f3c 1694358 1d11011 79b6488 6509a73 33eb5d4 6509a73 33eb5d4 b2a3d53 33eb5d4 b2a3d53 6509a73 dfecb5b 27e2770 cdbbabd 97ca4c0 dfecb5b 6509a73 9608c6c 6509a73 d48c285 6509a73 b2a3d53 5e7a3eb 79b6488 b2a3d53 79b6488 1d25e2a dfecb5b 79b6488 b2a3d53 94ce4d7 b092b28 dfecb5b 6509a73 b2a3d53 79b6488 b2a3d53 dfecb5b b2a3d53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import collections
from typing import Dict, List
import gradio as gr
from get_index import get_engines
from protein_viz import get_pdb_title, render_html
index_repo = "ronig/protein_index"
model_repo = "ronig/protein_search_engine"
engines = get_engines(index_repo, model_repo)
available_indexes = list(engines.keys())
app_description = """
# Protein Binding Search Engine
This application enables a quick protein-peptide binding search based on sequences.
You can use it to search the full [PDB](https://www.rcsb.org/) database or in a specific organism genome.
"""
max_results = 1000
choice_sep = " | "
max_seq_length = 50
def search_and_display(seq, max_res, index_selection):
n_search_res = 10000
_validate_sequence_length(seq)
max_res = int(limit_n_results(max_res))
engine = engines[index_selection]
search_res = engine.search_by_sequence(seq, n=n_search_res)
agg_search_results = aggregate_search_results(search_res, max_res)
formatted_search_results = format_search_results(agg_search_results)
results_options = update_dropdown_menu(agg_search_results)
return formatted_search_results, results_options
def _validate_sequence_length(seq):
if len(seq) > max_seq_length:
raise gr.Error("Only peptide input is currently supported")
def limit_n_results(n):
return max(min(n, max_results), 1)
def aggregate_search_results(raw_results: List[dict], max_res: int) -> Dict[str, dict]:
aggregated_by_gene = collections.defaultdict(list)
for raw_result in raw_results:
entry = select_keys(
raw_result,
keys=["pdb_name", "chain_id", "score", "organism", "uniprot_id"]
)
genes = raw_result["genes"]
if genes is not None:
gene_names = genes.split(" ")
for gene in gene_names:
aggregated_by_gene[gene].append(entry)
if len(aggregated_by_gene) >= max_res:
return dict(aggregated_by_gene)
return dict(aggregated_by_gene)
def select_keys(d: dict, keys: List[str]):
return {key: d[key] for key in keys}
def format_search_results(agg_search_results):
formatted_search_results = {}
for gene, entries in agg_search_results.items():
entry = entries[0]
organism = entry["organism"]
score = entry["score"]
uniprot_id = entry["uniprot_id"]
key = f"Gene: {gene} | Organism: {organism} | Uniprot ID: {uniprot_id}"
formatted_search_results[key] = score
return formatted_search_results
def update_dropdown_menu(agg_search_res):
choices = []
for gene, entries in agg_search_res.items():
for entry in entries:
choice = choice_sep.join([gene, entry["pdb_name"], entry["chain_id"]])
choices.append(choice)
if choices:
update = gr.Dropdown.update(
choices=choices, interactive=True, value=choices[0], visible=True
)
else:
update = gr.Dropdown.update(
choices=choices, interactive=True, visible=False, value=None
)
return update
def parse_pdb_search_result(raw_result):
prot = raw_result["pdb_name"]
chain = raw_result["chain_id"]
value = raw_result["score"]
gene_names = raw_result["genes"]
species = raw_result["organism"]
key = f"PDB: {prot}.{chain}"
if gene_names is not None:
key += f" | Genes: {gene_names} | Organism: {species}"
return key, value
def switch_viz(new_choice):
if new_choice is None:
html = ""
title_update = gr.Markdown.update(visible=False)
description_update = gr.Markdown.update(value=None, visible=False)
else:
choice_parts = new_choice.split(choice_sep)
pdb_id, chain = choice_parts[1:3]
title_update = gr.Markdown.update(visible=True)
pdb_title = get_pdb_title(pdb_id)
new_value = f"""**PDB Title**: {pdb_title}"""
description_update = gr.Markdown.update(value=new_value, visible=True)
html = render_html(pdb_id=pdb_id, chain=chain)
return html, title_update, description_update
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown(app_description)
with gr.Column():
with gr.Row():
with gr.Column():
seq_input = gr.Textbox(value="APTMPPPLPP", label="Input Sequence")
n_results = gr.Number(10, label="N Results")
index_selector = gr.Dropdown(
choices=available_indexes,
value="All Species",
multiselect=False,
visible=True,
label="Index",
)
search_button = gr.Button("Search", variant="primary")
search_results = gr.Label(
num_top_classes=max_results, label="Search Results"
)
viz_header = gr.Markdown("## Visualization", visible=False)
results_selector = gr.Dropdown(
choices=[],
multiselect=False,
visible=False,
label="Visualized Search Result",
)
viz_body = gr.Markdown("", visible=False)
protein_viz = gr.HTML(
value=render_html(pdb_id=None, chain=None),
label="Protein Visualization",
)
gr.Examples(
["APTMPPPLPP", "KFLIYQMECSTMIFGL", "PHFAMPPIHEDHLE", "AEERIISLD"],
inputs=[seq_input],
)
search_button.click(
search_and_display,
inputs=[seq_input, n_results, index_selector],
outputs=[search_results, results_selector],
)
results_selector.change(
switch_viz, inputs=results_selector, outputs=[protein_viz, viz_header, viz_body]
)
if __name__ == "__main__":
demo.launch()
|