Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import sys | |
import warnings | |
import random | |
import time | |
import logging | |
from typing import Dict, List, Tuple, Union, Optional | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
handlers=[logging.StreamHandler()] | |
) | |
logger = logging.getLogger(__name__) | |
# Download model weights only if they don't exist | |
if not os.path.exists("groundingdino_swint_ogc.pth"): | |
os.system("wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth") | |
if not os.path.exists("sam_hq_vit_l.pth"): | |
os.system("wget https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_l.pth") | |
# Add paths | |
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO")) | |
sys.path.append(os.path.join(os.getcwd(), "sam-hq")) | |
warnings.filterwarnings("ignore") | |
import numpy as np | |
import torch | |
import torchvision | |
import gradio as gr | |
import argparse | |
from PIL import Image, ImageDraw, ImageFont | |
from scipy import ndimage | |
# Grounding DINO | |
import GroundingDINO.groundingdino.datasets.transforms as T | |
from GroundingDINO.groundingdino.models import build_model | |
from GroundingDINO.groundingdino.util.slconfig import SLConfig | |
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap | |
# segment anything | |
from segment_anything import build_sam_vit_l, SamPredictor | |
# # BLIP | |
# from transformers import BlipProcessor, BlipForConditionalGeneration | |
# Constants | |
CONFIG_FILE = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py' | |
GROUNDINGDINO_CHECKPOINT = "groundingdino_swint_ogc.pth" | |
SAM_CHECKPOINT = 'sam_hq_vit_l.pth' | |
OUTPUT_DIR = "outputs" | |
# Global variables for model caching | |
_models = { | |
'groundingdino': None, | |
'sam_predictor': None | |
} | |
# Enable GPU if available with proper error handling | |
try: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
logger.info(f"Using device: {device}") | |
except Exception as e: | |
logger.warning(f"Error detecting GPU, falling back to CPU: {e}") | |
device = 'cpu' | |
class ModelManager: | |
"""Manages model loading, unloading, and provides error handling""" | |
def load_model(model_name: str) -> None: | |
"""Load a model if not already loaded""" | |
try: | |
if model_name == 'groundingdino' and _models['groundingdino'] is None: | |
logger.info("Loading GroundingDINO model...") | |
start_time = time.time() | |
if not os.path.exists(GROUNDINGDINO_CHECKPOINT): | |
raise FileNotFoundError(f"GroundingDINO checkpoint not found at {GROUNDINGDINO_CHECKPOINT}") | |
args = SLConfig.fromfile(CONFIG_FILE) | |
args.device = device | |
model = build_model(args) | |
checkpoint = torch.load(GROUNDINGDINO_CHECKPOINT, map_location="cpu") | |
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) | |
logger.info(f"GroundingDINO load result: {load_res}") | |
_ = model.eval() | |
_models['groundingdino'] = model | |
logger.info(f"GroundingDINO model loaded in {time.time() - start_time:.2f} seconds") | |
elif model_name == 'sam' and _models['sam_predictor'] is None: | |
logger.info("Loading SAM-HQ model...") | |
start_time = time.time() | |
if not os.path.exists(SAM_CHECKPOINT): | |
raise FileNotFoundError(f"SAM checkpoint not found at {SAM_CHECKPOINT}") | |
sam = build_sam_vit_l(checkpoint=SAM_CHECKPOINT) | |
sam.to(device=device) | |
_models['sam_predictor'] = SamPredictor(sam) | |
logger.info(f"SAM-HQ model loaded in {time.time() - start_time:.2f} seconds") | |
# elif model_name == 'blip' and (_models['blip_processor'] is None or _models['blip_model'] is None): | |
# logger.info("Loading BLIP model...") | |
# start_time = time.time() | |
# _models['blip_processor'] = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") | |
# _models['blip_model'] = BlipForConditionalGeneration.from_pretrained( | |
# "Salesforce/blip-image-captioning-large", torch_dtype=torch.float16 | |
# ).to(device) | |
# logger.info(f"BLIP model loaded in {time.time() - start_time:.2f} seconds") | |
except Exception as e: | |
logger.error(f"Error loading {model_name} model: {e}") | |
raise RuntimeError(f"Failed to load {model_name} model: {e}") | |
def get_model(model_name: str): | |
"""Get a model, loading it if necessary""" | |
if model_name not in _models or _models[model_name] is None: | |
ModelManager.load_model(model_name) | |
return _models[model_name] | |
def unload_model(model_name: str) -> None: | |
"""Unload a model to free memory""" | |
if model_name in _models and _models[model_name] is not None: | |
logger.info(f"Unloading {model_name} model") | |
_models[model_name] = None | |
if device == 'cuda': | |
torch.cuda.empty_cache() | |
# def generate_caption(raw_image: Image.Image) -> str: | |
# """Generate image caption using BLIP""" | |
# try: | |
# blip_processor = ModelManager.get_model('blip_processor') | |
# blip_model = ModelManager.get_model('blip_model') | |
# inputs = blip_processor(raw_image, return_tensors="pt").to(device, torch.float16) | |
# out = blip_model.generate(**inputs) | |
# caption = blip_processor.decode(out[0], skip_special_tokens=True) | |
# logger.info(f"Generated caption: {caption}") | |
# return caption | |
# except Exception as e: | |
# logger.error(f"Error generating caption: {e}") | |
# return "Failed to generate caption." | |
def transform_image(image_pil: Image.Image) -> torch.Tensor: | |
"""Transform PIL image for GroundingDINO""" | |
transform = T.Compose([ | |
T.RandomResize([800], max_size=1333), | |
T.ToTensor(), | |
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
]) | |
image, _ = transform(image_pil, None) # 3, h, w | |
return image | |
def get_grounding_output( | |
image: torch.Tensor, | |
caption: str, | |
box_threshold: float, | |
text_threshold: float, | |
with_logits: bool = True | |
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]: | |
"""Run GroundingDINO to get bounding boxes from text prompt""" | |
try: | |
model = ModelManager.get_model('groundingdino') | |
# Format caption | |
caption = caption.lower().strip() | |
if not caption.endswith("."): | |
caption = caption + "." | |
with torch.no_grad(): | |
outputs = model(image[None], captions=[caption]) | |
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) | |
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) | |
# Filter output | |
logits_filt = logits.clone() | |
boxes_filt = boxes.clone() | |
filt_mask = logits_filt.max(dim=1)[0] > box_threshold | |
logits_filt = logits_filt[filt_mask] # num_filt, 256 | |
boxes_filt = boxes_filt[filt_mask] # num_filt, 4 | |
# Get phrases | |
tokenizer = model.tokenizer | |
tokenized = tokenizer(caption) | |
pred_phrases = [] | |
scores = [] | |
for logit, box in zip(logits_filt, boxes_filt): | |
pred_phrase = get_phrases_from_posmap( | |
logit > text_threshold, tokenized, tokenizer) | |
if with_logits: | |
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") | |
else: | |
pred_phrases.append(pred_phrase) | |
scores.append(logit.max().item()) | |
return boxes_filt, torch.Tensor(scores), pred_phrases | |
except Exception as e: | |
logger.error(f"Error in grounding output: {e}") | |
# Return empty results instead of crashing | |
return torch.Tensor([]), torch.Tensor([]), [] | |
def draw_mask(mask: np.ndarray, draw: ImageDraw.Draw) -> None: | |
"""Draw mask on image""" | |
# if random_color: | |
# color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255), 153) | |
# else: | |
# color = (30, 144, 255, 153) | |
color = (255, 255, 255, 255) | |
nonzero_coords = np.transpose(np.nonzero(mask)) | |
for coord in nonzero_coords: | |
draw.point(coord[::-1], fill=color) | |
def draw_box(box: torch.Tensor, draw: ImageDraw.Draw, label: Optional[str]) -> None: | |
"""Draw bounding box on image""" | |
color = tuple(np.random.randint(0, 255, size=3).tolist()) | |
draw.rectangle(((box[0], box[1]), (box[2], box[3])), outline=color, width=2) | |
if label: | |
font = ImageFont.load_default() | |
if hasattr(font, "getbbox"): | |
bbox = draw.textbbox((box[0], box[1]), str(label), font) | |
else: | |
w, h = draw.textsize(str(label), font) | |
bbox = (box[0], box[1], w + box[0], box[1] + h) | |
draw.rectangle(bbox, fill=color) | |
draw.text((box[0], box[1]), str(label), fill="white") | |
# def draw_point(point: np.ndarray, draw: ImageDraw.Draw, r: int = 10) -> None: | |
# """Draw points on image""" | |
# for p in point: | |
# x, y = p | |
# draw.ellipse((x-r, y-r, x+r, y+r), fill='green') | |
# def process_scribble_points(scribble: np.ndarray) -> np.ndarray: | |
# """Process scribble mask to get point coordinates""" | |
# # Transpose to get the correct orientation | |
# scribble = scribble.transpose(2, 1, 0)[0] | |
# # Label connected components | |
# labeled_array, num_features = ndimage.label(scribble >= 255) | |
# if num_features == 0: | |
# logger.warning("No points detected in scribble") | |
# return np.array([]) | |
# # Get center of mass for each component | |
# centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features + 1)) | |
# return np.array(centers) | |
# def process_scribble_box(scribble: np.ndarray) -> torch.Tensor: | |
# """Process scribble mask to get bounding box""" | |
# # Get point coordinates first | |
# centers = process_scribble_points(scribble) | |
# if len(centers) < 2: | |
# logger.warning("Not enough points for bounding box, need at least 2") | |
# # Return a default small box in the center if not enough points | |
# return torch.tensor([[0.4, 0.4, 0.6, 0.6]]) | |
# # Define bounding box from scribble centers: (x_min, y_min, x_max, y_max) | |
# x_min = centers[:, 0].min() | |
# x_max = centers[:, 0].max() | |
# y_min = centers[:, 1].min() | |
# y_max = centers[:, 1].max() | |
# bbox = np.array([x_min, y_min, x_max, y_max]) | |
# return torch.tensor(bbox).unsqueeze(0) | |
def run_grounded_sam( | |
input_image | |
# text_prompt: str, | |
# task_type: str, | |
# box_threshold: float, | |
# text_threshold: float, | |
# iou_threshold: float, | |
# hq_token_only | |
) -> List[Image.Image]: | |
"""Main function to run GroundingDINO and SAM-HQ""" | |
try: | |
# Create output directory | |
os.makedirs(OUTPUT_DIR, exist_ok=True) | |
text_prompt = 'car' | |
task_type = 'text' | |
box_threshold = 0.3 | |
text_threshold = 0.25 | |
iou_threshold = 0.8 | |
hq_token_only = True | |
# Process input image | |
if isinstance(input_image, dict): | |
# Input from gradio sketch component | |
scribble = np.array(input_image["mask"]) | |
image_pil = input_image["image"].convert("RGB") | |
else: | |
# Direct image input | |
image_pil = input_image.convert("RGB") if input_image else None | |
scribble = None | |
if image_pil is None: | |
logger.error("No input image provided") | |
return [Image.new('RGB', (400, 300), color='gray')] | |
# # Prepare for scribble tasks | |
# if task_type == 'scribble_box' or task_type == 'scribble_point': | |
# if scribble is None: | |
# logger.warning(f"No scribble provided for {task_type} task") | |
# scribble = np.zeros((image_pil.height, image_pil.width, 3), dtype=np.uint8) | |
# Transform image for GroundingDINO | |
transformed_image = transform_image(image_pil) | |
# Load models as needed | |
ModelManager.load_model('groundingdino') | |
size = image_pil.size | |
H, W = size[1], size[0] | |
# Run GroundingDINO with provided text | |
boxes_filt, scores, pred_phrases = get_grounding_output( | |
transformed_image, text_prompt, box_threshold, text_threshold | |
) | |
# # Process based on task type | |
# if task_type == 'automatic': | |
# # Generate caption with BLIP | |
# ModelManager.load_model('blip') | |
# text_prompt = generate_caption(image_pil) | |
# logger.info(f"Automatic caption: {text_prompt}") | |
# # Run GroundingDINO | |
# boxes_filt, scores, pred_phrases = get_grounding_output( | |
# transformed_image, text_prompt, box_threshold, text_threshold | |
# ) | |
# elif task_type == 'text': | |
# if not text_prompt: | |
# logger.warning("No text prompt provided for 'text' task") | |
# return [image_pil, Image.new('RGBA', size, color=(0, 0, 0, 0))] | |
# # Run GroundingDINO with provided text | |
# boxes_filt, scores, pred_phrases = get_grounding_output( | |
# transformed_image, text_prompt, box_threshold, text_threshold | |
# ) | |
# elif task_type == 'scribble_box': | |
# # No need for GroundingDINO, get box from scribble | |
# boxes_filt = process_scribble_box(scribble) | |
# scores = torch.ones(boxes_filt.size(0)) | |
# pred_phrases = ["scribble_box"] * boxes_filt.size(0) | |
# elif task_type == 'scribble_point': | |
# # Will handle differently with SAM | |
# point_coords = process_scribble_points(scribble) | |
# if len(point_coords) == 0: | |
# logger.warning("No points detected in scribble") | |
# return [image_pil, Image.new('RGBA', size, color=(0, 0, 0, 0))] | |
# boxes_filt = None # Not needed for point-based segmentation | |
# else: | |
# logger.error(f"Unknown task type: {task_type}") | |
# return [image_pil, Image.new('RGBA', size, color=(0, 0, 0, 0))] | |
# Process boxes if present (not for scribble_point) | |
if boxes_filt is not None: | |
# Scale boxes to image dimensions | |
for i in range(boxes_filt.size(0)): | |
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) | |
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 | |
boxes_filt[i][2:] += boxes_filt[i][:2] | |
# Apply non-maximum suppression if we have multiple boxes | |
if boxes_filt.size(0) > 1: | |
logger.info(f"Before NMS: {boxes_filt.shape[0]} boxes") | |
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist() | |
boxes_filt = boxes_filt[nms_idx] | |
pred_phrases = [pred_phrases[idx] for idx in nms_idx] | |
logger.info(f"After NMS: {boxes_filt.shape[0]} boxes") | |
# Load SAM model | |
ModelManager.load_model('sam') | |
sam_predictor = ModelManager.get_model('sam_predictor') | |
# Set image for SAM | |
image = np.array(image_pil) | |
sam_predictor.set_image(image) | |
# # Convert string to boolean | |
# if isinstance(hq_token_only, str): | |
# hq_token_only = (hq_token_only.lower() == 'true') | |
# Run SAM | |
# Use boxes for these task types | |
if boxes_filt.size(0) == 0: | |
logger.warning("No boxes detected") | |
return [image_pil, Image.new('RGBA', size, color=(0, 0, 0, 0))] | |
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device) | |
masks, _, _ = sam_predictor.predict_torch( | |
point_coords=None, | |
point_labels=None, | |
boxes=transformed_boxes, | |
multimask_output=False, | |
hq_token_only=hq_token_only, | |
) | |
# elif task_type == 'scribble_point': | |
# # Use points for this task type | |
# point_labels = np.ones(point_coords.shape[0]) | |
# masks, _, _ = sam_predictor.predict( | |
# point_coords=point_coords, | |
# point_labels=point_labels, | |
# box=None, | |
# multimask_output=False, | |
# hq_token_only=hq_token_only, | |
# ) | |
# Create mask image | |
mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0)) | |
mask_draw = ImageDraw.Draw(mask_image) | |
# Draw masks | |
if task_type == 'text': | |
# for mask in masks: | |
# draw_mask(mask, mask_draw, random_color=True) | |
# else: | |
for mask in masks: | |
draw_mask(mask[0].cpu().numpy(), mask_draw) | |
# Draw boxes and points on original image | |
image_draw = ImageDraw.Draw(image_pil) | |
for box, label in zip(boxes_filt, pred_phrases): | |
draw_box(box, image_draw, label) | |
# if task_type == 'scribble_box': | |
# for box in boxes_filt: | |
# draw_box(box, image_draw, None) | |
# elif task_type in ['text', 'automatic']: | |
# for box, label in zip(boxes_filt, pred_phrases): | |
# draw_box(box, image_draw, label) | |
# elif task_type == 'scribble_point': | |
# draw_point(point_coords, image_draw) | |
# Add caption text for automatic mode | |
# if task_type == 'automatic': | |
# image_draw.text((10, 10), text_prompt, fill='black') | |
# Combine original image with mask | |
# image_pil = image_pil.convert('RGBA') | |
# image_pil.alpha_composite(mask_image) | |
# return [image_pil, mask_image] | |
return [mask_image] | |
except Exception as e: | |
logger.error(f"Error in run_grounded_sam: {e}") | |
# Return original image on error | |
if isinstance(input_image, dict) and "image" in input_image: | |
return [input_image["image"], Image.new('RGBA', input_image["image"].size, color=(0, 0, 0, 0))] | |
elif isinstance(input_image, Image.Image): | |
return [input_image, Image.new('RGBA', input_image.size, color=(0, 0, 0, 0))] | |
else: | |
return [Image.new('RGB', (400, 300), color='gray'), Image.new('RGBA', (400, 300), color=(0, 0, 0, 0))] | |
def create_ui(): | |
"""Create Gradio UI for CarViz demo""" | |
with gr.Blocks(title="CarViz Demo") as block: | |
gr.Markdown(""" | |
# CarViz | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil", label="image") | |
# input_image = gr.ImageMask( | |
# sources=["upload", "clipboard"], | |
# transforms=[], | |
# layers=False, | |
# format="pil", | |
# label="base image", | |
# show_label=True | |
# ) | |
# task_type = gr.Dropdown( | |
# ["automatic", "scribble_point", "scribble_box", "text"], | |
# value="automatic", | |
# label="Task Type" | |
# ) | |
# text_prompt = gr.Textbox(label="Text Prompt", placeholder="bench .") | |
# hq_token_only = gr.Dropdown( | |
# [False, True], value=False, label="hq_token_only" | |
# ) | |
run_button = gr.Button(value='Run') | |
# with gr.Accordion("Advanced options", open=False): | |
# box_threshold = gr.Slider( | |
# label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001 | |
# ) | |
# text_threshold = gr.Slider( | |
# label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001 | |
# ) | |
# iou_threshold = gr.Slider( | |
# label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001 | |
# ) | |
with gr.Column(): | |
gallery = gr.Gallery( | |
label="Generated images", show_label=False, elem_id="gallery" | |
) | |
# # Update visibility of text prompt based on task type | |
# def update_text_prompt_visibility(task): | |
# return gr.update(visible=(task == "text")) | |
# task_type.change( | |
# fn=update_text_prompt_visibility, | |
# inputs=[task_type], | |
# outputs=[text_prompt] | |
# ) | |
# Run button | |
run_button.click( | |
fn=run_grounded_sam, | |
inputs=[ | |
input_image | |
# , text_prompt, task_type, | |
# box_threshold, text_threshold, iou_threshold, hq_token_only | |
], | |
outputs=gallery | |
) | |
return block | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True) | |
parser.add_argument("--debug", action="store_true", help="using debug mode") | |
parser.add_argument("--share", action="store_true", help="share the app") | |
parser.add_argument('--no-gradio-queue', action="store_true", help="disable gradio queue") | |
parser.add_argument('--port', type=int, default=7860, help="port to run the app") | |
parser.add_argument('--host', type=str, default="0.0.0.0", help="host to run the app") | |
args = parser.parse_args() | |
logger.info(f"Starting CarViz demo with args: {args}") | |
# Check for model files | |
if not os.path.exists(GROUNDINGDINO_CHECKPOINT): | |
logger.warning(f"GroundingDINO checkpoint not found at {GROUNDINGDINO_CHECKPOINT}") | |
if not os.path.exists(SAM_CHECKPOINT): | |
logger.warning(f"SAM-HQ checkpoint not found at {SAM_CHECKPOINT}") | |
# Create app | |
block = create_ui() | |
if not args.no_gradio_queue: | |
block = block.queue() | |
# Launch app | |
try: | |
block.launch( | |
debug=args.debug, | |
share=args.share, | |
show_error=True, | |
server_name=args.host, | |
server_port=args.port | |
) | |
except Exception as e: | |
logger.error(f"Error launching app: {e}") | |