Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import shutil | |
import sys | |
import warnings | |
import random | |
import time | |
import logging | |
import dotenv | |
import fal_client | |
import requests | |
import base64 | |
from io import BytesIO | |
from typing import Dict, List, Tuple, Union, Optional | |
# dotenv.load_dotenv() | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
handlers=[logging.StreamHandler()] | |
) | |
logger = logging.getLogger(__name__) | |
# Download model weights only if they don't exist | |
if not os.path.exists("groundingdino_swint_ogc.pth"): | |
os.system("wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth") | |
if not os.path.exists("sam_hq_vit_l.pth"): | |
os.system("wget https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_l.pth") | |
# Add paths | |
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO")) | |
sys.path.append(os.path.join(os.getcwd(), "sam-hq")) | |
warnings.filterwarnings("ignore") | |
import numpy as np | |
import torch | |
import torchvision | |
import gradio as gr | |
import argparse | |
from PIL import Image, ImageDraw, ImageFont | |
# Grounding DINO | |
import GroundingDINO.groundingdino.datasets.transforms as T | |
from GroundingDINO.groundingdino.models import build_model | |
from GroundingDINO.groundingdino.util.slconfig import SLConfig | |
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap | |
# segment anything | |
from segment_anything import build_sam_vit_l, SamPredictor | |
# Constants | |
CONFIG_FILE = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py' | |
GROUNDINGDINO_CHECKPOINT = "groundingdino_swint_ogc.pth" | |
SAM_CHECKPOINT = 'sam_hq_vit_l.pth' | |
OUTPUT_DIR = "outputs" | |
FAL_KEY = os.getenv("FAL_KEY") | |
UPLOAD_DIR = "./tmp/images" | |
os.makedirs(UPLOAD_DIR, exist_ok=True) | |
# Global variables for model caching | |
_models = { | |
'groundingdino': None, | |
'sam_predictor': None | |
} | |
# Enable GPU if available with proper error handling | |
try: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
logger.info(f"Using device: {device}") | |
except Exception as e: | |
logger.warning(f"Error detecting GPU, falling back to CPU: {e}") | |
device = 'cpu' | |
class ModelManager: | |
"""Manages model loading, unloading, and provides error handling""" | |
def load_model(model_name: str) -> None: | |
"""Load a model if not already loaded""" | |
try: | |
if model_name == 'groundingdino' and _models['groundingdino'] is None: | |
logger.info("Loading GroundingDINO model...") | |
start_time = time.time() | |
if not os.path.exists(GROUNDINGDINO_CHECKPOINT): | |
raise FileNotFoundError(f"GroundingDINO checkpoint not found at {GROUNDINGDINO_CHECKPOINT}") | |
args = SLConfig.fromfile(CONFIG_FILE) | |
args.device = device | |
model = build_model(args) | |
checkpoint = torch.load(GROUNDINGDINO_CHECKPOINT, map_location="cpu") | |
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) | |
logger.info(f"GroundingDINO load result: {load_res}") | |
_ = model.eval() | |
_models['groundingdino'] = model | |
logger.info(f"GroundingDINO model loaded in {time.time() - start_time:.2f} seconds") | |
elif model_name == 'sam' and _models['sam_predictor'] is None: | |
logger.info("Loading SAM-HQ model...") | |
start_time = time.time() | |
if not os.path.exists(SAM_CHECKPOINT): | |
raise FileNotFoundError(f"SAM checkpoint not found at {SAM_CHECKPOINT}") | |
sam = build_sam_vit_l(checkpoint=SAM_CHECKPOINT) | |
sam.to(device=device) | |
_models['sam_predictor'] = SamPredictor(sam) | |
logger.info(f"SAM-HQ model loaded in {time.time() - start_time:.2f} seconds") | |
except Exception as e: | |
logger.error(f"Error loading {model_name} model: {e}") | |
raise RuntimeError(f"Failed to load {model_name} model: {e}") | |
def get_model(model_name: str): | |
"""Get a model, loading it if necessary""" | |
if model_name not in _models or _models[model_name] is None: | |
ModelManager.load_model(model_name) | |
return _models[model_name] | |
def unload_model(model_name: str) -> None: | |
"""Unload a model to free memory""" | |
if model_name in _models and _models[model_name] is not None: | |
logger.info(f"Unloading {model_name} model") | |
_models[model_name] = None | |
if device == 'cuda': | |
torch.cuda.empty_cache() | |
def transform_image(image_pil: Image.Image) -> torch.Tensor: | |
"""Transform PIL image for GroundingDINO""" | |
transform = T.Compose([ | |
T.RandomResize([800], max_size=1333), | |
T.ToTensor(), | |
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
]) | |
image, _ = transform(image_pil, None) # 3, h, w | |
return image | |
def get_grounding_output( | |
image: torch.Tensor, | |
caption: str, | |
box_threshold: float, | |
text_threshold: float, | |
with_logits: bool = True | |
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]: | |
"""Run GroundingDINO to get bounding boxes from text prompt""" | |
try: | |
model = ModelManager.get_model('groundingdino') | |
# Format caption | |
caption = caption.lower().strip() | |
if not caption.endswith("."): | |
caption = caption + "." | |
with torch.no_grad(): | |
outputs = model(image[None], captions=[caption]) | |
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) | |
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) | |
# Filter output | |
logits_filt = logits.clone() | |
boxes_filt = boxes.clone() | |
filt_mask = logits_filt.max(dim=1)[0] > box_threshold | |
logits_filt = logits_filt[filt_mask] # num_filt, 256 | |
boxes_filt = boxes_filt[filt_mask] # num_filt, 4 | |
# Get phrases | |
tokenizer = model.tokenizer | |
tokenized = tokenizer(caption) | |
pred_phrases = [] | |
scores = [] | |
for logit, box in zip(logits_filt, boxes_filt): | |
pred_phrase = get_phrases_from_posmap( | |
logit > text_threshold, tokenized, tokenizer) | |
if with_logits: | |
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") | |
else: | |
pred_phrases.append(pred_phrase) | |
scores.append(logit.max().item()) | |
return boxes_filt, torch.Tensor(scores), pred_phrases | |
except Exception as e: | |
logger.error(f"Error in grounding output: {e}") | |
# Return empty results instead of crashing | |
return torch.Tensor([]), torch.Tensor([]), [] | |
def draw_mask(mask: np.ndarray, draw: ImageDraw.Draw) -> None: | |
"""Draw mask on image""" | |
color = (255, 255, 255, 255) | |
nonzero_coords = np.transpose(np.nonzero(mask)) | |
for coord in nonzero_coords: | |
draw.point(coord[::-1], fill=color) | |
def draw_box(box: torch.Tensor, draw: ImageDraw.Draw, label: Optional[str]) -> None: | |
"""Draw bounding box on image""" | |
color = tuple(np.random.randint(0, 255, size=3).tolist()) | |
draw.rectangle(((box[0], box[1]), (box[2], box[3])), outline=color, width=2) | |
if label: | |
font = ImageFont.load_default() | |
if hasattr(font, "getbbox"): | |
bbox = draw.textbbox((box[0], box[1]), str(label), font) | |
else: | |
w, h = draw.textsize(str(label), font) | |
bbox = (box[0], box[1], w + box[0], box[1] + h) | |
draw.rectangle(bbox, fill=color) | |
draw.text((box[0], box[1]), str(label), fill="white") | |
def run_grounded_sam(input_image): | |
"""Main function to run GroundingDINO and SAM-HQ""" | |
try: | |
# Create output directory | |
os.makedirs(OUTPUT_DIR, exist_ok=True) | |
text_prompt = 'car' | |
task_type = 'text' | |
box_threshold = 0.3 | |
text_threshold = 0.25 | |
iou_threshold = 0.8 | |
hq_token_only = True | |
# Process input image | |
if isinstance(input_image, dict): | |
# Input from gradio sketch component | |
scribble = np.array(input_image["mask"]) | |
image_pil = input_image["image"].convert("RGB") | |
else: | |
# Direct image input | |
image_pil = input_image.convert("RGB") if input_image else None | |
scribble = None | |
if image_pil is None: | |
logger.error("No input image provided") | |
return [Image.new('RGB', (400, 300), color='gray')] | |
# Transform image for GroundingDINO | |
transformed_image = transform_image(image_pil) | |
# Load models as needed | |
ModelManager.load_model('groundingdino') | |
size = image_pil.size | |
H, W = size[1], size[0] | |
# Run GroundingDINO with provided text | |
boxes_filt, scores, pred_phrases = get_grounding_output( | |
transformed_image, text_prompt, box_threshold, text_threshold | |
) | |
if boxes_filt is not None: | |
# Scale boxes to image dimensions | |
for i in range(boxes_filt.size(0)): | |
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) | |
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 | |
boxes_filt[i][2:] += boxes_filt[i][:2] | |
# Apply non-maximum suppression if we have multiple boxes | |
if boxes_filt.size(0) > 1: | |
logger.info(f"Before NMS: {boxes_filt.shape[0]} boxes") | |
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist() | |
boxes_filt = boxes_filt[nms_idx] | |
pred_phrases = [pred_phrases[idx] for idx in nms_idx] | |
logger.info(f"After NMS: {boxes_filt.shape[0]} boxes") | |
# Load SAM model | |
ModelManager.load_model('sam') | |
sam_predictor = ModelManager.get_model('sam_predictor') | |
# Set image for SAM | |
image = np.array(image_pil) | |
sam_predictor.set_image(image) | |
# Run SAM | |
# Use boxes for these task types | |
if boxes_filt.size(0) == 0: | |
logger.warning("No boxes detected") | |
return [image_pil, Image.new('RGBA', size, color=(0, 0, 0, 0))] | |
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device) | |
masks, _, _ = sam_predictor.predict_torch( | |
point_coords=None, | |
point_labels=None, | |
boxes=transformed_boxes, | |
multimask_output=False, | |
hq_token_only=hq_token_only, | |
) | |
# Create mask image | |
mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0)) | |
mask_draw = ImageDraw.Draw(mask_image) | |
# Draw masks | |
for mask in masks: | |
draw_mask(mask[0].cpu().numpy(), mask_draw) | |
# Draw boxes and points on original image | |
image_draw = ImageDraw.Draw(image_pil) | |
for box, label in zip(boxes_filt, pred_phrases): | |
draw_box(box, image_draw, label) | |
return mask_image | |
except Exception as e: | |
logger.error(f"Error in run_grounded_sam: {e}") | |
# Return original image on error | |
if isinstance(input_image, dict) and "image" in input_image: | |
return [input_image["image"], Image.new('RGBA', input_image["image"].size, color=(0, 0, 0, 0))] | |
elif isinstance(input_image, Image.Image): | |
return [input_image, Image.new('RGBA', input_image.size, color=(0, 0, 0, 0))] | |
else: | |
return [Image.new('RGB', (400, 300), color='gray'), Image.new('RGBA', (400, 300), color=(0, 0, 0, 0))] | |
def image_gaussian_blur(image: torch.Tensor, radius: float) -> torch.Tensor: | |
if image.ndim == 4: # Remove batch dimension if present | |
image = image.squeeze(0) | |
pil_image = tensor2pil(image) | |
blurred_pil_image = pil_image.filter(ImageFilter.GaussianBlur(radius)) | |
return pil2tensor(blurred_pil_image).squeeze(0) | |
def load_image(image_path: str) -> torch.Tensor: | |
image = Image.open(image_path).convert("RGBA") | |
image_tensor = torch.from_numpy(np.array(image)).permute(2, 0, 1).float() / 255.0 | |
return image_tensor | |
def split_image_with_alpha(image: torch.Tensor): | |
out_images = image[:3, :, :] | |
out_alphas = image[3, :, :] if image.shape[0] > 3 else torch.ones_like(image[0, :, :]) | |
result = (out_images.unsqueeze(0), 1.0 - out_alphas.unsqueeze(0)) | |
return result | |
def pil2numpy(image: Image.Image): | |
return np.array(image).astype(np.float32) / 255.0 | |
def numpy2pil(image: np.ndarray, mode=None): | |
return Image.fromarray(np.clip(255.0 * image, 0, 255).astype(np.uint8), mode) | |
def pil2tensor(image: Image.Image): | |
return torch.from_numpy(pil2numpy(image)).unsqueeze(0) | |
def invert(image): | |
s = 1.0 - image | |
return s | |
def tensor2pil(image: torch.Tensor, mode=None): | |
if image.ndim == 2: # Grayscale image | |
image = image.unsqueeze(0) # Add channel dimension | |
if image.ndim != 3 or image.shape[1:] == (0, 0): | |
raise ValueError(f"Invalid tensor dimensions: {image.shape}") | |
if image.shape[0] == 1: # Single channel, replicate to 3 channels | |
image = image.repeat(3, 1, 1) | |
elif image.shape[0] != 3: | |
raise ValueError("Unexpected number of channels in the image tensor") | |
return numpy2pil(image.cpu().numpy().transpose(1, 2, 0), mode=mode) | |
def extract_high_frequency(image: torch.Tensor, blur_radius: float = 5.0) -> torch.Tensor: | |
"""Extract high-frequency details by subtracting the blurred image from the original.""" | |
if image.ndim == 4: | |
image = image.squeeze(0) | |
blurred = image_gaussian_blur(image, blur_radius) | |
if blurred.ndim == 4: | |
blurred = blurred.squeeze(0) | |
elif blurred.ndim == 3 and blurred.shape[0] != 3: | |
blurred = blurred.permute(2, 0, 1) | |
high_freq = image - blurred | |
return high_freq | |
def image_blend_mask(image_a, image_b, mask, blend_percentage): | |
# Convert images to PIL | |
img_a = tensor2pil(image_a) | |
img_b = tensor2pil(image_b) | |
mask = ImageOps.invert(tensor2pil(mask).convert('L')) | |
# Mask image | |
masked_img = Image.composite(img_a, img_b, mask.resize(img_a.size)) | |
# Blend image | |
blend_mask = Image.new(mode="L", size=img_a.size, | |
color=(round(blend_percentage * 255))) | |
blend_mask = ImageOps.invert(blend_mask) | |
img_result = Image.composite(img_a, masked_img, blend_mask) | |
del img_a, img_b, blend_mask, mask | |
return (pil2tensor(img_result), ) | |
def encode_image(image): | |
buffer = BytesIO() | |
image.save(buffer, format="PNG") | |
encoded_image = base64.b64encode(buffer.getvalue()).decode("utf-8") | |
return f"data:image/png;base64,{encoded_image}" | |
def generate_ai_bg(input_img, prompt): | |
hf_input_img = encode_image(input_img) | |
handler = fal_client.submit( | |
"fal-ai/iclight-v2", | |
arguments={ | |
"prompt": prompt, | |
"image_url": hf_input_img | |
}, | |
webhook_url="https://optional.webhook.url/for/results", | |
) | |
request_id = handler.request_id | |
status = fal_client.status("fal-ai/iclight-v2", request_id, with_logs=True) | |
result = fal_client.result("fal-ai/iclight-v2", request_id) | |
ic_light_img = result['images'][0]['url'] | |
return ic_light_img | |
def blend_details(input_image, relit_image, masked_image): | |
with torch.inference_mode(): | |
# Load and resize images | |
# input_image = load_image(input_image_path) | |
# relit_image = load_image(relit_image_path) | |
# masked_image = load_image(masked_image_path) | |
# Resize input image | |
input_image = torch.nn.functional.interpolate( | |
input_image.unsqueeze(0), | |
size=(1024, 1024), | |
mode="bicubic", | |
align_corners=False | |
).squeeze(0) | |
# Resize relit image | |
relit_image = torch.nn.functional.interpolate( | |
relit_image.unsqueeze(0), | |
size=(1024, 1024), | |
mode="bicubic", | |
align_corners=False | |
).squeeze(0) | |
# Resize masked image | |
masked_image = torch.nn.functional.interpolate( | |
masked_image.unsqueeze(0), | |
size=(1024, 1024), | |
mode="bicubic", | |
align_corners=False | |
).squeeze(0) | |
# Split images and get RGB channels | |
input_image_rgb = split_image_with_alpha(input_image)[0].squeeze(0) | |
relit_image_rgb = split_image_with_alpha(relit_image)[0].squeeze(0) | |
# Use masked image RGB channels as segmentation mask (average of RGB channels) | |
segmentation_mask = masked_image[:3].mean(dim=0) # Average RGB channels to get grayscale mask | |
print(f"segmentation_mask shape: {segmentation_mask.shape}") | |
# Extract high-frequency details from input image | |
high_freq_details = extract_high_frequency(input_image_rgb, blur_radius=3.0) | |
# Print shapes for debugging | |
print(f"high_freq_details shape: {high_freq_details.shape}") | |
print(f"segmentation_mask shape: {segmentation_mask.shape}") | |
print(f"relit_image_rgb shape: {relit_image_rgb.shape}") | |
# Apply high-frequency details only in masked areas | |
detail_strength = 0.5 | |
segmentation_mask = segmentation_mask.unsqueeze(0).repeat(3, 1, 1) # Expand mask to match RGB channels | |
masked_details = high_freq_details * segmentation_mask | |
# final_image = relit_image_rgb + (masked_details * detail_strength) | |
# final_image = image_blend_mask(relit_image_rgb, masked_details, mask, blend_percentage) | |
final_image = relit_image_rgb + masked_details | |
print('final_image shape:', final_image.shape) | |
# Normalize to [0, 1] range | |
final_image = torch.clamp(final_image, 0, 1) | |
# Save intermediate results for debugging | |
tensor2pil(segmentation_mask).save("output/segmentation_mask.png") | |
tensor2pil(high_freq_details).save("output/high_freq_details.png") | |
tensor2pil(masked_details).save("output/masked_details.png") | |
# Save final result | |
final_image_pil = tensor2pil(final_image) | |
# final_image_pil.save("output/output_image.png") | |
return [final_image_pil] | |
def generate_image(input_img, ai_gen_image, prompt): | |
# ai_gen_image = generate_ai_bg(input_img, prompt) | |
mask_input_image = run_grounded_sam(input_img) | |
final_image = blend_details(input_img, ai_gen_image, mask_input_image) | |
return [final_image] | |
def create_ui(): | |
"""Create Gradio UI for CarViz demo""" | |
with gr.Blocks(title="CarViz Demo") as block: | |
gr.Markdown(""" | |
# CarViz | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil", label="image") | |
ai_image = gr.Image(type="pil", label="image") | |
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...") | |
run_button = gr.Button(value='Run') | |
with gr.Column(): | |
gallery = gr.Gallery( | |
label="Generated images", show_label=False, elem_id="gallery" | |
) | |
# Run button | |
run_button.click( | |
fn=generate_image, | |
inputs=[ | |
input_image, | |
ai_image, | |
prompt | |
], | |
outputs=gallery | |
) | |
return block | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser("Carviz demo", add_help=True) | |
parser.add_argument("--debug", action="store_true", help="using debug mode") | |
parser.add_argument("--share", action="store_true", help="share the app") | |
parser.add_argument('--no-gradio-queue', action="store_true", help="disable gradio queue") | |
parser.add_argument('--port', type=int, default=7860, help="port to run the app") | |
parser.add_argument('--host', type=str, default="0.0.0.0", help="host to run the app") | |
args = parser.parse_args() | |
logger.info(f"Starting CarViz demo with args: {args}") | |
# Check for model files | |
if not os.path.exists(GROUNDINGDINO_CHECKPOINT): | |
logger.warning(f"GroundingDINO checkpoint not found at {GROUNDINGDINO_CHECKPOINT}") | |
if not os.path.exists(SAM_CHECKPOINT): | |
logger.warning(f"SAM-HQ checkpoint not found at {SAM_CHECKPOINT}") | |
# Create app | |
block = create_ui() | |
if not args.no_gradio_queue: | |
block = block.queue() | |
# Launch app | |
try: | |
block.launch( | |
debug=args.debug, | |
share=args.share, | |
show_error=True, | |
server_name=args.host, | |
server_port=args.port | |
) | |
except Exception as e: | |
logger.error(f"Error launching app: {e}") | |