rootglitch's picture
Added app
f7336c1
raw
history blame
23.3 kB
Hugging Face's logo
Hugging Face
Models
Datasets
Spaces
Posts
Docs
Enterprise
Pricing
Spaces:
rootglitch
/
CarVizGradioDemo
private
Logs
App
Files
Community
Settings
CarVizGradioDemo
/
app.py
rootglitch's picture
rootglitch
Update app.py
0a122cc
verified
about 8 hours ago
raw
Copy download link
history
blame
edit
delete
22.9 kB
import os
import sys
import warnings
import random
import time
import logging
from typing import Dict, List, Tuple, Union, Optional
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
# Download model weights only if they don't exist
if not os.path.exists("groundingdino_swint_ogc.pth"):
os.system("wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth")
if not os.path.exists("sam_hq_vit_l.pth"):
os.system("wget https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_l.pth")
# Add paths
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO"))
sys.path.append(os.path.join(os.getcwd(), "sam-hq"))
warnings.filterwarnings("ignore")
import numpy as np
import torch
import torchvision
import gradio as gr
import argparse
from PIL import Image, ImageDraw, ImageFont
from scipy import ndimage
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from segment_anything import build_sam_vit_l, SamPredictor
# BLIP
from transformers import BlipProcessor, BlipForConditionalGeneration
# Constants
CONFIG_FILE = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
GROUNDINGDINO_CHECKPOINT = "groundingdino_swint_ogc.pth"
SAM_CHECKPOINT = 'sam_hq_vit_l.pth'
OUTPUT_DIR = "outputs"
# Global variables for model caching
_models = {
'groundingdino': None,
'sam_predictor': None,
'blip_processor': None,
'blip_model': None
}
# Enable GPU if available with proper error handling
try:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
logger.info(f"Using device: {device}")
except Exception as e:
logger.warning(f"Error detecting GPU, falling back to CPU: {e}")
device = 'cpu'
class ModelManager:
"""Manages model loading, unloading, and provides error handling"""
@staticmethod
def load_model(model_name: str) -> None:
"""Load a model if not already loaded"""
try:
if model_name == 'groundingdino' and _models['groundingdino'] is None:
logger.info("Loading GroundingDINO model...")
start_time = time.time()
if not os.path.exists(GROUNDINGDINO_CHECKPOINT):
raise FileNotFoundError(f"GroundingDINO checkpoint not found at {GROUNDINGDINO_CHECKPOINT}")
args = SLConfig.fromfile(CONFIG_FILE)
args.device = device
model = build_model(args)
checkpoint = torch.load(GROUNDINGDINO_CHECKPOINT, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
logger.info(f"GroundingDINO load result: {load_res}")
_ = model.eval()
_models['groundingdino'] = model
logger.info(f"GroundingDINO model loaded in {time.time() - start_time:.2f} seconds")
elif model_name == 'sam' and _models['sam_predictor'] is None:
logger.info("Loading SAM-HQ model...")
start_time = time.time()
if not os.path.exists(SAM_CHECKPOINT):
raise FileNotFoundError(f"SAM checkpoint not found at {SAM_CHECKPOINT}")
sam = build_sam_vit_l(checkpoint=SAM_CHECKPOINT)
sam.to(device=device)
_models['sam_predictor'] = SamPredictor(sam)
logger.info(f"SAM-HQ model loaded in {time.time() - start_time:.2f} seconds")
elif model_name == 'blip' and (_models['blip_processor'] is None or _models['blip_model'] is None):
logger.info("Loading BLIP model...")
start_time = time.time()
_models['blip_processor'] = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
_models['blip_model'] = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-large", torch_dtype=torch.float16
).to(device)
logger.info(f"BLIP model loaded in {time.time() - start_time:.2f} seconds")
except Exception as e:
logger.error(f"Error loading {model_name} model: {e}")
raise RuntimeError(f"Failed to load {model_name} model: {e}")
@staticmethod
def get_model(model_name: str):
"""Get a model, loading it if necessary"""
if model_name not in _models or _models[model_name] is None:
ModelManager.load_model(model_name)
return _models[model_name]
@staticmethod
def unload_model(model_name: str) -> None:
"""Unload a model to free memory"""
if model_name in _models and _models[model_name] is not None:
logger.info(f"Unloading {model_name} model")
_models[model_name] = None
if device == 'cuda':
torch.cuda.empty_cache()
# def generate_caption(raw_image: Image.Image) -> str:
# """Generate image caption using BLIP"""
# try:
# blip_processor = ModelManager.get_model('blip_processor')
# blip_model = ModelManager.get_model('blip_model')
# inputs = blip_processor(raw_image, return_tensors="pt").to(device, torch.float16)
# out = blip_model.generate(**inputs)
# caption = blip_processor.decode(out[0], skip_special_tokens=True)
# logger.info(f"Generated caption: {caption}")
# return caption
# except Exception as e:
# logger.error(f"Error generating caption: {e}")
# return "Failed to generate caption."
def transform_image(image_pil: Image.Image) -> torch.Tensor:
"""Transform PIL image for GroundingDINO"""
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
image, _ = transform(image_pil, None) # 3, h, w
return image
def get_grounding_output(
image: torch.Tensor,
caption: str,
box_threshold: float,
text_threshold: float,
with_logits: bool = True
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
"""Run GroundingDINO to get bounding boxes from text prompt"""
try:
model = ModelManager.get_model('groundingdino')
# Format caption
caption = caption.lower().strip()
if not caption.endswith("."):
caption = caption + "."
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
# Filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
# Get phrases
tokenizer = model.tokenizer
tokenized = tokenizer(caption)
pred_phrases = []
scores = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(
logit > text_threshold, tokenized, tokenizer)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
scores.append(logit.max().item())
return boxes_filt, torch.Tensor(scores), pred_phrases
except Exception as e:
logger.error(f"Error in grounding output: {e}")
# Return empty results instead of crashing
return torch.Tensor([]), torch.Tensor([]), []
def draw_mask(mask: np.ndarray, draw: ImageDraw.Draw) -> None:
"""Draw mask on image"""
# if random_color:
# color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255), 153)
# else:
# color = (30, 144, 255, 153)
color = (255, 255, 255, 255)
nonzero_coords = np.transpose(np.nonzero(mask))
for coord in nonzero_coords:
draw.point(coord[::-1], fill=color)
def draw_box(box: torch.Tensor, draw: ImageDraw.Draw, label: Optional[str]) -> None:
"""Draw bounding box on image"""
color = tuple(np.random.randint(0, 255, size=3).tolist())
draw.rectangle(((box[0], box[1]), (box[2], box[3])), outline=color, width=2)
if label:
font = ImageFont.load_default()
if hasattr(font, "getbbox"):
bbox = draw.textbbox((box[0], box[1]), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (box[0], box[1], w + box[0], box[1] + h)
draw.rectangle(bbox, fill=color)
draw.text((box[0], box[1]), str(label), fill="white")
# def draw_point(point: np.ndarray, draw: ImageDraw.Draw, r: int = 10) -> None:
# """Draw points on image"""
# for p in point:
# x, y = p
# draw.ellipse((x-r, y-r, x+r, y+r), fill='green')
# def process_scribble_points(scribble: np.ndarray) -> np.ndarray:
# """Process scribble mask to get point coordinates"""
# # Transpose to get the correct orientation
# scribble = scribble.transpose(2, 1, 0)[0]
# # Label connected components
# labeled_array, num_features = ndimage.label(scribble >= 255)
# if num_features == 0:
# logger.warning("No points detected in scribble")
# return np.array([])
# # Get center of mass for each component
# centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features + 1))
# return np.array(centers)
# def process_scribble_box(scribble: np.ndarray) -> torch.Tensor:
# """Process scribble mask to get bounding box"""
# # Get point coordinates first
# centers = process_scribble_points(scribble)
# if len(centers) < 2:
# logger.warning("Not enough points for bounding box, need at least 2")
# # Return a default small box in the center if not enough points
# return torch.tensor([[0.4, 0.4, 0.6, 0.6]])
# # Define bounding box from scribble centers: (x_min, y_min, x_max, y_max)
# x_min = centers[:, 0].min()
# x_max = centers[:, 0].max()
# y_min = centers[:, 1].min()
# y_max = centers[:, 1].max()
# bbox = np.array([x_min, y_min, x_max, y_max])
# return torch.tensor(bbox).unsqueeze(0)
def run_grounded_sam(
input_image
# text_prompt: str,
# task_type: str,
# box_threshold: float,
# text_threshold: float,
# iou_threshold: float,
# hq_token_only
) -> List[Image.Image]:
"""Main function to run GroundingDINO and SAM-HQ"""
try:
# Create output directory
os.makedirs(OUTPUT_DIR, exist_ok=True)
text_prompt = 'car'
task_type = 'text'
box_threshold = 0.3
text_threshold = 0.25
iou_threshold = 0.8
hq_token_only = True
# Process input image
if isinstance(input_image, dict):
# Input from gradio sketch component
scribble = np.array(input_image["mask"])
image_pil = input_image["image"].convert("RGB")
else:
# Direct image input
image_pil = input_image.convert("RGB") if input_image else None
scribble = None
if image_pil is None:
logger.error("No input image provided")
return [Image.new('RGB', (400, 300), color='gray')]
# # Prepare for scribble tasks
# if task_type == 'scribble_box' or task_type == 'scribble_point':
# if scribble is None:
# logger.warning(f"No scribble provided for {task_type} task")
# scribble = np.zeros((image_pil.height, image_pil.width, 3), dtype=np.uint8)
# Transform image for GroundingDINO
transformed_image = transform_image(image_pil)
# Load models as needed
ModelManager.load_model('groundingdino')
size = image_pil.size
H, W = size[1], size[0]
# Run GroundingDINO with provided text
boxes_filt, scores, pred_phrases = get_grounding_output(
transformed_image, text_prompt, box_threshold, text_threshold
)
# # Process based on task type
# if task_type == 'automatic':
# # Generate caption with BLIP
# ModelManager.load_model('blip')
# text_prompt = generate_caption(image_pil)
# logger.info(f"Automatic caption: {text_prompt}")
# # Run GroundingDINO
# boxes_filt, scores, pred_phrases = get_grounding_output(
# transformed_image, text_prompt, box_threshold, text_threshold
# )
# elif task_type == 'text':
# if not text_prompt:
# logger.warning("No text prompt provided for 'text' task")
# return [image_pil, Image.new('RGBA', size, color=(0, 0, 0, 0))]
# # Run GroundingDINO with provided text
# boxes_filt, scores, pred_phrases = get_grounding_output(
# transformed_image, text_prompt, box_threshold, text_threshold
# )
# elif task_type == 'scribble_box':
# # No need for GroundingDINO, get box from scribble
# boxes_filt = process_scribble_box(scribble)
# scores = torch.ones(boxes_filt.size(0))
# pred_phrases = ["scribble_box"] * boxes_filt.size(0)
# elif task_type == 'scribble_point':
# # Will handle differently with SAM
# point_coords = process_scribble_points(scribble)
# if len(point_coords) == 0:
# logger.warning("No points detected in scribble")
# return [image_pil, Image.new('RGBA', size, color=(0, 0, 0, 0))]
# boxes_filt = None # Not needed for point-based segmentation
# else:
# logger.error(f"Unknown task type: {task_type}")
# return [image_pil, Image.new('RGBA', size, color=(0, 0, 0, 0))]
# Process boxes if present (not for scribble_point)
if boxes_filt is not None:
# Scale boxes to image dimensions
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
# Apply non-maximum suppression if we have multiple boxes
if boxes_filt.size(0) > 1:
logger.info(f"Before NMS: {boxes_filt.shape[0]} boxes")
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
boxes_filt = boxes_filt[nms_idx]
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
logger.info(f"After NMS: {boxes_filt.shape[0]} boxes")
# Load SAM model
ModelManager.load_model('sam')
sam_predictor = ModelManager.get_model('sam_predictor')
# Set image for SAM
image = np.array(image_pil)
sam_predictor.set_image(image)
# # Convert string to boolean
# if isinstance(hq_token_only, str):
# hq_token_only = (hq_token_only.lower() == 'true')
# Run SAM
# Use boxes for these task types
if boxes_filt.size(0) == 0:
logger.warning("No boxes detected")
return [image_pil, Image.new('RGBA', size, color=(0, 0, 0, 0))]
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
masks, _, _ = sam_predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
hq_token_only=hq_token_only,
)
# elif task_type == 'scribble_point':
# # Use points for this task type
# point_labels = np.ones(point_coords.shape[0])
# masks, _, _ = sam_predictor.predict(
# point_coords=point_coords,
# point_labels=point_labels,
# box=None,
# multimask_output=False,
# hq_token_only=hq_token_only,
# )
# Create mask image
mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))
mask_draw = ImageDraw.Draw(mask_image)
# Draw masks
if task_type == 'text':
# for mask in masks:
# draw_mask(mask, mask_draw, random_color=True)
# else:
for mask in masks:
draw_mask(mask[0].cpu().numpy(), mask_draw)
# Draw boxes and points on original image
image_draw = ImageDraw.Draw(image_pil)
for box, label in zip(boxes_filt, pred_phrases):
draw_box(box, image_draw, label)
# if task_type == 'scribble_box':
# for box in boxes_filt:
# draw_box(box, image_draw, None)
# elif task_type in ['text', 'automatic']:
# for box, label in zip(boxes_filt, pred_phrases):
# draw_box(box, image_draw, label)
# elif task_type == 'scribble_point':
# draw_point(point_coords, image_draw)
# Add caption text for automatic mode
# if task_type == 'automatic':
# image_draw.text((10, 10), text_prompt, fill='black')
# Combine original image with mask
# image_pil = image_pil.convert('RGBA')
# image_pil.alpha_composite(mask_image)
# return [image_pil, mask_image]
return [mask_image]
except Exception as e:
logger.error(f"Error in run_grounded_sam: {e}")
# Return original image on error
if isinstance(input_image, dict) and "image" in input_image:
return [input_image["image"], Image.new('RGBA', input_image["image"].size, color=(0, 0, 0, 0))]
elif isinstance(input_image, Image.Image):
return [input_image, Image.new('RGBA', input_image.size, color=(0, 0, 0, 0))]
else:
return [Image.new('RGB', (400, 300), color='gray'), Image.new('RGBA', (400, 300), color=(0, 0, 0, 0))]
def create_ui():
"""Create Gradio UI for CarViz demo"""
with gr.Blocks(title="CarViz Demo") as block:
gr.Markdown("""
# CarViz
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="image")
# input_image = gr.ImageMask(
# sources=["upload", "clipboard"],
# transforms=[],
# layers=False,
# format="pil",
# label="base image",
# show_label=True
# )
# task_type = gr.Dropdown(
# ["automatic", "scribble_point", "scribble_box", "text"],
# value="automatic",
# label="Task Type"
# )
# text_prompt = gr.Textbox(label="Text Prompt", placeholder="bench .")
# hq_token_only = gr.Dropdown(
# [False, True], value=False, label="hq_token_only"
# )
run_button = gr.Button(value='Run')
# with gr.Accordion("Advanced options", open=False):
# box_threshold = gr.Slider(
# label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001
# )
# text_threshold = gr.Slider(
# label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
# )
# iou_threshold = gr.Slider(
# label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001
# )
with gr.Column():
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
)
# # Update visibility of text prompt based on task type
# def update_text_prompt_visibility(task):
# return gr.update(visible=(task == "text"))
# task_type.change(
# fn=update_text_prompt_visibility,
# inputs=[task_type],
# outputs=[text_prompt]
# )
# Run button
run_button.click(
fn=run_grounded_sam,
inputs=[
input_image
# , text_prompt, task_type,
# box_threshold, text_threshold, iou_threshold, hq_token_only
],
outputs=gallery
)
return block
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
parser.add_argument('--no-gradio-queue', action="store_true", help="disable gradio queue")
parser.add_argument('--port', type=int, default=7860, help="port to run the app")
parser.add_argument('--host', type=str, default="0.0.0.0", help="host to run the app")
args = parser.parse_args()
logger.info(f"Starting CarViz demo with args: {args}")
# Check for model files
if not os.path.exists(GROUNDINGDINO_CHECKPOINT):
logger.warning(f"GroundingDINO checkpoint not found at {GROUNDINGDINO_CHECKPOINT}")
if not os.path.exists(SAM_CHECKPOINT):
logger.warning(f"SAM-HQ checkpoint not found at {SAM_CHECKPOINT}")
# Create app
block = create_ui()
if not args.no_gradio_queue:
block = block.queue()
# Launch app
try:
block.launch(
debug=args.debug,
share=args.share,
show_error=True,
server_name=args.host,
server_port=args.port
)
except Exception as e:
logger.error(f"Error launching app: {e}")