Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
186da5b
1
Parent(s):
b66ab63
Added High freq blending code
Browse files
app.py
CHANGED
@@ -7,8 +7,16 @@ import time
|
|
7 |
import logging
|
8 |
import dotenv
|
9 |
import fal_client
|
10 |
-
import requests
|
11 |
import base64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from io import BytesIO
|
13 |
from typing import Dict, List, Tuple, Union, Optional
|
14 |
|
@@ -34,14 +42,6 @@ sys.path.append(os.path.join(os.getcwd(), "GroundingDINO"))
|
|
34 |
sys.path.append(os.path.join(os.getcwd(), "sam-hq"))
|
35 |
warnings.filterwarnings("ignore")
|
36 |
|
37 |
-
import numpy as np
|
38 |
-
import torch
|
39 |
-
import torchvision
|
40 |
-
import gradio as gr
|
41 |
-
import argparse
|
42 |
-
from PIL import Image, ImageFilter, ImageOps, ImageDraw, ImageFont
|
43 |
-
|
44 |
-
|
45 |
# Grounding DINO
|
46 |
import GroundingDINO.groundingdino.datasets.transforms as T
|
47 |
from GroundingDINO.groundingdino.models import build_model
|
@@ -56,10 +56,10 @@ CONFIG_FILE = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
|
|
56 |
GROUNDINGDINO_CHECKPOINT = "groundingdino_swint_ogc.pth"
|
57 |
SAM_CHECKPOINT = 'sam_hq_vit_l.pth'
|
58 |
OUTPUT_DIR = "outputs"
|
59 |
-
FAL_KEY = os.getenv("FAL_KEY")
|
60 |
-
UPLOAD_DIR = "./tmp/images"
|
61 |
|
62 |
-
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
63 |
|
64 |
# Global variables for model caching
|
65 |
_models = {
|
@@ -329,89 +329,106 @@ def run_grounded_sam(input_image):
|
|
329 |
else:
|
330 |
return [Image.new('RGB', (400, 300), color='gray'), Image.new('RGBA', (400, 300), color=(0, 0, 0, 0))]
|
331 |
|
332 |
-
def
|
333 |
-
|
334 |
-
|
335 |
-
pil_image = tensor2pil(image)
|
336 |
-
blurred_pil_image = pil_image.filter(ImageFilter.GaussianBlur(radius))
|
337 |
-
return pil2tensor(blurred_pil_image).squeeze(0)
|
338 |
-
|
339 |
-
def load_image(image_path: str) -> torch.Tensor:
|
340 |
-
image = Image.open(image_path).convert("RGBA")
|
341 |
-
image_tensor = torch.from_numpy(np.array(image)).permute(2, 0, 1).float() / 255.0
|
342 |
-
return image_tensor
|
343 |
-
|
344 |
-
def split_image_with_alpha(image: torch.Tensor):
|
345 |
-
out_images = image[:3, :, :]
|
346 |
-
out_alphas = image[3, :, :] if image.shape[0] > 3 else torch.ones_like(image[0, :, :])
|
347 |
-
result = (out_images.unsqueeze(0), 1.0 - out_alphas.unsqueeze(0))
|
348 |
-
return result
|
349 |
-
|
350 |
-
def pil2numpy(image: Image.Image):
|
351 |
-
return np.array(image).astype(np.float32) / 255.0
|
352 |
-
|
353 |
-
def numpy2pil(image: np.ndarray, mode=None):
|
354 |
-
return Image.fromarray(np.clip(255.0 * image, 0, 255).astype(np.uint8), mode)
|
355 |
|
356 |
-
def
|
357 |
-
|
|
|
|
|
358 |
|
359 |
-
def
|
360 |
-
|
361 |
-
return
|
362 |
|
363 |
-
def
|
364 |
-
|
365 |
-
|
|
|
|
|
|
|
366 |
|
367 |
-
|
368 |
-
|
369 |
-
|
|
|
|
|
370 |
|
371 |
-
|
372 |
-
|
|
|
|
|
|
|
|
|
|
|
373 |
|
374 |
-
|
375 |
-
|
376 |
-
elif image.shape[0] != 3:
|
377 |
-
raise ValueError("Unexpected number of channels in the image tensor")
|
378 |
-
|
379 |
-
return numpy2pil(image.cpu().numpy().transpose(1, 2, 0), mode=mode)
|
380 |
|
381 |
-
def
|
382 |
-
"""Extract high-frequency details by subtracting the blurred image from the original."""
|
383 |
-
if image.ndim == 4:
|
384 |
-
image = image.squeeze(0)
|
385 |
-
|
386 |
-
blurred = image_gaussian_blur(image, blur_radius)
|
387 |
-
|
388 |
-
if blurred.ndim == 4:
|
389 |
-
blurred = blurred.squeeze(0)
|
390 |
-
elif blurred.ndim == 3 and blurred.shape[0] != 3:
|
391 |
-
blurred = blurred.permute(2, 0, 1)
|
392 |
-
|
393 |
-
high_freq = image - blurred
|
394 |
-
return high_freq
|
395 |
|
396 |
-
|
397 |
-
|
398 |
-
# Convert images to PIL
|
399 |
-
img_a = tensor2pil(image_a)
|
400 |
-
img_b = tensor2pil(image_b)
|
401 |
-
mask = ImageOps.invert(tensor2pil(mask).convert('L'))
|
402 |
|
403 |
# Mask image
|
404 |
-
masked_img = Image.composite(
|
405 |
|
406 |
# Blend image
|
407 |
-
blend_mask = Image.new(mode="L", size=
|
408 |
color=(round(blend_percentage * 255)))
|
409 |
blend_mask = ImageOps.invert(blend_mask)
|
410 |
-
img_result = Image.composite(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
|
412 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
413 |
|
414 |
-
|
415 |
|
416 |
def encode_image(image):
|
417 |
buffer = BytesIO()
|
@@ -442,75 +459,71 @@ def generate_ai_bg(input_img, prompt):
|
|
442 |
return ic_light_img
|
443 |
|
444 |
def blend_details(input_image, relit_image, masked_image):
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
align_corners=False
|
473 |
-
).squeeze(0)
|
474 |
-
|
475 |
-
# Split images and get RGB channels
|
476 |
-
input_image_rgb = split_image_with_alpha(input_image)[0].squeeze(0)
|
477 |
-
relit_image_rgb = split_image_with_alpha(relit_image)[0].squeeze(0)
|
478 |
-
|
479 |
-
# Use masked image RGB channels as segmentation mask (average of RGB channels)
|
480 |
-
segmentation_mask = masked_image[:3].mean(dim=0) # Average RGB channels to get grayscale mask
|
481 |
-
|
482 |
-
print(f"segmentation_mask shape: {segmentation_mask.shape}")
|
483 |
-
|
484 |
-
# Extract high-frequency details from input image
|
485 |
-
high_freq_details = extract_high_frequency(input_image_rgb, blur_radius=3.0)
|
486 |
-
|
487 |
-
# Print shapes for debugging
|
488 |
-
print(f"high_freq_details shape: {high_freq_details.shape}")
|
489 |
-
print(f"segmentation_mask shape: {segmentation_mask.shape}")
|
490 |
-
print(f"relit_image_rgb shape: {relit_image_rgb.shape}")
|
491 |
-
|
492 |
-
# Apply high-frequency details only in masked areas
|
493 |
-
detail_strength = 0.5
|
494 |
-
segmentation_mask = segmentation_mask.unsqueeze(0).repeat(3, 1, 1) # Expand mask to match RGB channels
|
495 |
-
masked_details = high_freq_details * segmentation_mask
|
496 |
-
# final_image = relit_image_rgb + (masked_details * detail_strength)
|
497 |
-
# final_image = image_blend_mask(relit_image_rgb, masked_details, mask, blend_percentage)
|
498 |
-
final_image = relit_image_rgb + masked_details
|
499 |
-
print('final_image shape:', final_image.shape)
|
500 |
-
|
501 |
-
# Normalize to [0, 1] range
|
502 |
-
final_image = torch.clamp(final_image, 0, 1)
|
503 |
-
|
504 |
-
# Save intermediate results for debugging
|
505 |
-
# tensor2pil(segmentation_mask).save("output/segmentation_mask.png")
|
506 |
-
# tensor2pil(high_freq_details).save("output/high_freq_details.png")
|
507 |
-
# tensor2pil(masked_details).save("output/masked_details.png")
|
508 |
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
513 |
|
|
|
514 |
def generate_image(input_img, ai_gen_image, prompt):
|
515 |
|
516 |
# ai_gen_image = generate_ai_bg(input_img, prompt)
|
@@ -539,7 +552,7 @@ def create_ui():
|
|
539 |
# gallery = gr.Gallery(
|
540 |
# label="Generated images", show_label=False, elem_id="gallery"
|
541 |
# )
|
542 |
-
masked_image = gr.Image(label="Generated Image")
|
543 |
output_image = gr.Image(label="Generated Image")
|
544 |
|
545 |
# Run button
|
@@ -550,7 +563,7 @@ def create_ui():
|
|
550 |
ai_image,
|
551 |
prompt
|
552 |
],
|
553 |
-
outputs=[
|
554 |
)
|
555 |
|
556 |
return block
|
|
|
7 |
import logging
|
8 |
import dotenv
|
9 |
import fal_client
|
|
|
10 |
import base64
|
11 |
+
import numpy as np
|
12 |
+
import math
|
13 |
+
import scipy
|
14 |
+
import torch
|
15 |
+
import torchvision
|
16 |
+
import gradio as gr
|
17 |
+
import argparse
|
18 |
+
import spaces
|
19 |
+
from PIL import Image, ImageFilter, ImageOps, ImageDraw, ImageFont
|
20 |
from io import BytesIO
|
21 |
from typing import Dict, List, Tuple, Union, Optional
|
22 |
|
|
|
42 |
sys.path.append(os.path.join(os.getcwd(), "sam-hq"))
|
43 |
warnings.filterwarnings("ignore")
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
# Grounding DINO
|
46 |
import GroundingDINO.groundingdino.datasets.transforms as T
|
47 |
from GroundingDINO.groundingdino.models import build_model
|
|
|
56 |
GROUNDINGDINO_CHECKPOINT = "groundingdino_swint_ogc.pth"
|
57 |
SAM_CHECKPOINT = 'sam_hq_vit_l.pth'
|
58 |
OUTPUT_DIR = "outputs"
|
59 |
+
# FAL_KEY = os.getenv("FAL_KEY")
|
60 |
+
# UPLOAD_DIR = "./tmp/images"
|
61 |
|
62 |
+
# os.makedirs(UPLOAD_DIR, exist_ok=True)
|
63 |
|
64 |
# Global variables for model caching
|
65 |
_models = {
|
|
|
329 |
else:
|
330 |
return [Image.new('RGB', (400, 300), color='gray'), Image.new('RGBA', (400, 300), color=(0, 0, 0, 0))]
|
331 |
|
332 |
+
def split_image_with_alpha(image):
|
333 |
+
image = image.convert("RGB")
|
334 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
|
336 |
+
def gaussian_blur(image, radius=10):
|
337 |
+
"""Apply Gaussian blur to image."""
|
338 |
+
blurred = image.filter(ImageFilter.GaussianBlur(radius=10))
|
339 |
+
return blurred
|
340 |
|
341 |
+
def invert_image(image):
|
342 |
+
img_inverted = ImageOps.invert(image)
|
343 |
+
return img_inverted
|
344 |
|
345 |
+
def expand_mask(mask, expand, tapered_corners):
|
346 |
+
# Ensure mask is in grayscale (mode 'L')
|
347 |
+
mask = mask.convert("L")
|
348 |
+
|
349 |
+
# Convert to NumPy array
|
350 |
+
mask_np = np.array(mask)
|
351 |
|
352 |
+
# Define kernel
|
353 |
+
c = 0 if tapered_corners else 1
|
354 |
+
kernel = np.array([[c, 1, c],
|
355 |
+
[1, 1, 1],
|
356 |
+
[c, 1, c]], dtype=np.uint8)
|
357 |
|
358 |
+
# Perform dilation or erosion based on expand value
|
359 |
+
if expand > 0:
|
360 |
+
for _ in range(expand):
|
361 |
+
mask_np = scipy.ndimage.grey_dilation(mask_np, footprint=kernel)
|
362 |
+
elif expand < 0:
|
363 |
+
for _ in range(abs(expand)):
|
364 |
+
mask_np = scipy.ndimage.grey_erosion(mask_np, footprint=kernel)
|
365 |
|
366 |
+
# Convert back to PIL image
|
367 |
+
return Image.fromarray(mask_np, mode="L")
|
|
|
|
|
|
|
|
|
368 |
|
369 |
+
def image_blend_by_mask(image_a, image_b, mask, blend_percentage):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
|
371 |
+
mask = ImageOps.invert(mask.convert('L'))
|
|
|
|
|
|
|
|
|
|
|
372 |
|
373 |
# Mask image
|
374 |
+
masked_img = Image.composite(image_a, image_b, mask)
|
375 |
|
376 |
# Blend image
|
377 |
+
blend_mask = Image.new(mode="L", size=image_a.size,
|
378 |
color=(round(blend_percentage * 255)))
|
379 |
blend_mask = ImageOps.invert(blend_mask)
|
380 |
+
img_result = Image.composite(image_a, masked_img, blend_mask)
|
381 |
+
|
382 |
+
del image_a, image_b, blend_mask, mask
|
383 |
+
|
384 |
+
return img_result
|
385 |
+
|
386 |
+
def blend_images(image_a, image_b, blend_percentage):
|
387 |
+
"""Blend img_b over image_a using the normal mode with a blend percentage."""
|
388 |
+
img_a = image_a.convert("RGBA")
|
389 |
+
img_b = image_b.convert("RGBA")
|
390 |
+
|
391 |
+
# Blend img_b over img_a using alpha_composite (normal blend mode)
|
392 |
+
out_image = Image.alpha_composite(img_a, img_b)
|
393 |
+
|
394 |
+
out_image = out_image.convert("RGB")
|
395 |
+
|
396 |
+
# Create blend mask
|
397 |
+
blend_mask = Image.new("L", image_a.size, round(blend_percentage * 255))
|
398 |
+
blend_mask = ImageOps.invert(blend_mask) # Invert the mask
|
399 |
|
400 |
+
# Apply composite blend
|
401 |
+
result = Image.composite(image_a, out_image, blend_mask)
|
402 |
+
return result
|
403 |
+
|
404 |
+
def apply_image_levels(image, black_level, mid_level, white_level):
|
405 |
+
levels = AdjustLevels(black_level, mid_level, white_level)
|
406 |
+
adjusted_image = levels.adjust(image)
|
407 |
+
return adjusted_image
|
408 |
+
|
409 |
+
class AdjustLevels:
|
410 |
+
def __init__(self, min_level, mid_level, max_level):
|
411 |
+
self.min_level = min_level
|
412 |
+
self.mid_level = mid_level
|
413 |
+
self.max_level = max_level
|
414 |
+
|
415 |
+
def adjust(self, im):
|
416 |
+
|
417 |
+
im_arr = np.array(im).astype(np.float32)
|
418 |
+
im_arr[im_arr < self.min_level] = self.min_level
|
419 |
+
im_arr = (im_arr - self.min_level) * \
|
420 |
+
(255 / (self.max_level - self.min_level))
|
421 |
+
im_arr = np.clip(im_arr, 0, 255)
|
422 |
+
|
423 |
+
# mid-level adjustment
|
424 |
+
gamma = math.log(0.5) / math.log((self.mid_level - self.min_level) / (self.max_level - self.min_level))
|
425 |
+
im_arr = np.power(im_arr / 255, gamma) * 255
|
426 |
+
|
427 |
+
im_arr = im_arr.astype(np.uint8)
|
428 |
+
|
429 |
+
im = Image.fromarray(im_arr)
|
430 |
|
431 |
+
return im
|
432 |
|
433 |
def encode_image(image):
|
434 |
buffer = BytesIO()
|
|
|
459 |
return ic_light_img
|
460 |
|
461 |
def blend_details(input_image, relit_image, masked_image):
|
462 |
+
# input_image = load_image(input_image_path)
|
463 |
+
# relit_image = load_image(relit_image_path)
|
464 |
+
# masked_image = load_image(masked_image_path)
|
465 |
+
|
466 |
+
scaling_factor = 1
|
467 |
+
input_image = input_image.resize((int(input_image.width * scaling_factor),
|
468 |
+
int(input_image.height * scaling_factor)))
|
469 |
+
|
470 |
+
relit_image = relit_image.resize((int(relit_image.width * scaling_factor),
|
471 |
+
int(relit_image.height * scaling_factor)))
|
472 |
+
|
473 |
+
masked_image = masked_image.resize((int(masked_image.width * scaling_factor),
|
474 |
+
int(masked_image.height * scaling_factor)))
|
475 |
+
|
476 |
+
masked_image_rgb = split_image_with_alpha(masked_image)
|
477 |
+
masked_image_blurred = gaussian_blur(masked_image_rgb, radius=10)
|
478 |
+
grow_mask = expand_mask(masked_image_blurred, -15, True)
|
479 |
+
|
480 |
+
# grow_mask.save("output/grow_mask.png")
|
481 |
+
|
482 |
+
# Split images and get RGB channels
|
483 |
+
input_image_rgb = split_image_with_alpha(input_image)
|
484 |
+
input_blurred = gaussian_blur(input_image_rgb, radius=10)
|
485 |
+
input_inverted = invert_image(input_image_rgb)
|
486 |
+
|
487 |
+
# input_blurred.save("output/input_blurred.png")
|
488 |
+
# input_inverted.save("output/input_inverted.png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
489 |
|
490 |
+
# Add blurred and inverted images
|
491 |
+
input_blend_1 = blend_images(input_inverted, input_blurred, blend_percentage=0.5)
|
492 |
+
input_blend_1_inverted = invert_image(input_blend_1)
|
493 |
+
input_blend_2 = blend_images(input_blurred, input_blend_1_inverted, blend_percentage=1.0)
|
494 |
+
|
495 |
+
# input_blend_2.save("output/input_blend_2.png")
|
496 |
+
|
497 |
+
# Process relit image
|
498 |
+
relit_image_rgb = split_image_with_alpha(relit_image)
|
499 |
+
relit_blurred = gaussian_blur(relit_image_rgb, radius=10)
|
500 |
+
relit_inverted = invert_image(relit_image_rgb)
|
501 |
+
|
502 |
+
# relit_blurred.save("output/relit_blurred.png")
|
503 |
+
# relit_inverted.save("output/relit_inverted.png")
|
504 |
+
|
505 |
+
# Add blurred and inverted relit images
|
506 |
+
relit_blend_1 = blend_images(relit_inverted, relit_blurred, blend_percentage=0.5)
|
507 |
+
relit_blend_1_inverted = invert_image(relit_blend_1)
|
508 |
+
relit_blend_2 = blend_images(relit_blurred, relit_blend_1_inverted, blend_percentage=1.0)
|
509 |
+
|
510 |
+
# relit_blend_2.save("output/relit_blend_2.png")
|
511 |
+
|
512 |
+
high_freq_comp = image_blend_by_mask(relit_blend_2, input_blend_2, grow_mask, blend_percentage=1.0)
|
513 |
+
|
514 |
+
# high_freq_comp.save("output/high_freq_comp.png")
|
515 |
+
|
516 |
+
comped_image = blend_images(relit_blurred, high_freq_comp, blend_percentage=0.65)
|
517 |
+
|
518 |
+
# comped_image.save("output/comped_image.png")
|
519 |
+
|
520 |
+
final_image = apply_image_levels(comped_image, black_level=83, mid_level=128, white_level=172)
|
521 |
+
|
522 |
+
# final_image.save("output/final_image.png")
|
523 |
+
|
524 |
+
return final_image
|
525 |
|
526 |
+
@spaces.GPU
|
527 |
def generate_image(input_img, ai_gen_image, prompt):
|
528 |
|
529 |
# ai_gen_image = generate_ai_bg(input_img, prompt)
|
|
|
552 |
# gallery = gr.Gallery(
|
553 |
# label="Generated images", show_label=False, elem_id="gallery"
|
554 |
# )
|
555 |
+
# masked_image = gr.Image(label="Generated Image")
|
556 |
output_image = gr.Image(label="Generated Image")
|
557 |
|
558 |
# Run button
|
|
|
563 |
ai_image,
|
564 |
prompt
|
565 |
],
|
566 |
+
outputs=[output_image]
|
567 |
)
|
568 |
|
569 |
return block
|