Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
a57bf8b
1
Parent(s):
5017c3c
Remove commented code
Browse files
app.py
CHANGED
@@ -32,7 +32,7 @@ import torchvision
|
|
32 |
import gradio as gr
|
33 |
import argparse
|
34 |
from PIL import Image, ImageDraw, ImageFont
|
35 |
-
from scipy import ndimage
|
36 |
|
37 |
# Grounding DINO
|
38 |
import GroundingDINO.groundingdino.datasets.transforms as T
|
@@ -104,17 +104,7 @@ class ModelManager:
|
|
104 |
_models['sam_predictor'] = SamPredictor(sam)
|
105 |
|
106 |
logger.info(f"SAM-HQ model loaded in {time.time() - start_time:.2f} seconds")
|
107 |
-
|
108 |
-
# elif model_name == 'blip' and (_models['blip_processor'] is None or _models['blip_model'] is None):
|
109 |
-
# logger.info("Loading BLIP model...")
|
110 |
-
# start_time = time.time()
|
111 |
-
|
112 |
-
# _models['blip_processor'] = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
113 |
-
# _models['blip_model'] = BlipForConditionalGeneration.from_pretrained(
|
114 |
-
# "Salesforce/blip-image-captioning-large", torch_dtype=torch.float16
|
115 |
-
# ).to(device)
|
116 |
-
|
117 |
-
# logger.info(f"BLIP model loaded in {time.time() - start_time:.2f} seconds")
|
118 |
|
119 |
except Exception as e:
|
120 |
logger.error(f"Error loading {model_name} model: {e}")
|
@@ -137,22 +127,6 @@ class ModelManager:
|
|
137 |
torch.cuda.empty_cache()
|
138 |
|
139 |
|
140 |
-
# def generate_caption(raw_image: Image.Image) -> str:
|
141 |
-
# """Generate image caption using BLIP"""
|
142 |
-
# try:
|
143 |
-
# blip_processor = ModelManager.get_model('blip_processor')
|
144 |
-
# blip_model = ModelManager.get_model('blip_model')
|
145 |
-
|
146 |
-
# inputs = blip_processor(raw_image, return_tensors="pt").to(device, torch.float16)
|
147 |
-
# out = blip_model.generate(**inputs)
|
148 |
-
# caption = blip_processor.decode(out[0], skip_special_tokens=True)
|
149 |
-
# logger.info(f"Generated caption: {caption}")
|
150 |
-
# return caption
|
151 |
-
# except Exception as e:
|
152 |
-
# logger.error(f"Error generating caption: {e}")
|
153 |
-
# return "Failed to generate caption."
|
154 |
-
|
155 |
-
|
156 |
def transform_image(image_pil: Image.Image) -> torch.Tensor:
|
157 |
"""Transform PIL image for GroundingDINO"""
|
158 |
transform = T.Compose([
|
@@ -218,10 +192,7 @@ def get_grounding_output(
|
|
218 |
|
219 |
def draw_mask(mask: np.ndarray, draw: ImageDraw.Draw) -> None:
|
220 |
"""Draw mask on image"""
|
221 |
-
|
222 |
-
# color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255), 153)
|
223 |
-
# else:
|
224 |
-
# color = (30, 144, 255, 153)
|
225 |
color = (255, 255, 255, 255)
|
226 |
|
227 |
nonzero_coords = np.transpose(np.nonzero(mask))
|
@@ -245,46 +216,6 @@ def draw_box(box: torch.Tensor, draw: ImageDraw.Draw, label: Optional[str]) -> N
|
|
245 |
draw.text((box[0], box[1]), str(label), fill="white")
|
246 |
|
247 |
|
248 |
-
# def draw_point(point: np.ndarray, draw: ImageDraw.Draw, r: int = 10) -> None:
|
249 |
-
# """Draw points on image"""
|
250 |
-
# for p in point:
|
251 |
-
# x, y = p
|
252 |
-
# draw.ellipse((x-r, y-r, x+r, y+r), fill='green')
|
253 |
-
|
254 |
-
|
255 |
-
# def process_scribble_points(scribble: np.ndarray) -> np.ndarray:
|
256 |
-
# """Process scribble mask to get point coordinates"""
|
257 |
-
# # Transpose to get the correct orientation
|
258 |
-
# scribble = scribble.transpose(2, 1, 0)[0]
|
259 |
-
# # Label connected components
|
260 |
-
# labeled_array, num_features = ndimage.label(scribble >= 255)
|
261 |
-
# if num_features == 0:
|
262 |
-
# logger.warning("No points detected in scribble")
|
263 |
-
# return np.array([])
|
264 |
-
|
265 |
-
# # Get center of mass for each component
|
266 |
-
# centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features + 1))
|
267 |
-
# return np.array(centers)
|
268 |
-
|
269 |
-
|
270 |
-
# def process_scribble_box(scribble: np.ndarray) -> torch.Tensor:
|
271 |
-
# """Process scribble mask to get bounding box"""
|
272 |
-
# # Get point coordinates first
|
273 |
-
# centers = process_scribble_points(scribble)
|
274 |
-
# if len(centers) < 2:
|
275 |
-
# logger.warning("Not enough points for bounding box, need at least 2")
|
276 |
-
# # Return a default small box in the center if not enough points
|
277 |
-
# return torch.tensor([[0.4, 0.4, 0.6, 0.6]])
|
278 |
-
|
279 |
-
# # Define bounding box from scribble centers: (x_min, y_min, x_max, y_max)
|
280 |
-
# x_min = centers[:, 0].min()
|
281 |
-
# x_max = centers[:, 0].max()
|
282 |
-
# y_min = centers[:, 1].min()
|
283 |
-
# y_max = centers[:, 1].max()
|
284 |
-
# bbox = np.array([x_min, y_min, x_max, y_max])
|
285 |
-
# return torch.tensor(bbox).unsqueeze(0)
|
286 |
-
|
287 |
-
|
288 |
def run_grounded_sam(
|
289 |
input_image
|
290 |
# text_prompt: str,
|
@@ -318,13 +249,7 @@ def run_grounded_sam(
|
|
318 |
if image_pil is None:
|
319 |
logger.error("No input image provided")
|
320 |
return [Image.new('RGB', (400, 300), color='gray')]
|
321 |
-
|
322 |
-
# # Prepare for scribble tasks
|
323 |
-
# if task_type == 'scribble_box' or task_type == 'scribble_point':
|
324 |
-
# if scribble is None:
|
325 |
-
# logger.warning(f"No scribble provided for {task_type} task")
|
326 |
-
# scribble = np.zeros((image_pil.height, image_pil.width, 3), dtype=np.uint8)
|
327 |
-
|
328 |
# Transform image for GroundingDINO
|
329 |
transformed_image = transform_image(image_pil)
|
330 |
|
@@ -337,49 +262,7 @@ def run_grounded_sam(
|
|
337 |
boxes_filt, scores, pred_phrases = get_grounding_output(
|
338 |
transformed_image, text_prompt, box_threshold, text_threshold
|
339 |
)
|
340 |
-
|
341 |
-
# # Process based on task type
|
342 |
-
# if task_type == 'automatic':
|
343 |
-
# # Generate caption with BLIP
|
344 |
-
# ModelManager.load_model('blip')
|
345 |
-
# text_prompt = generate_caption(image_pil)
|
346 |
-
# logger.info(f"Automatic caption: {text_prompt}")
|
347 |
-
|
348 |
-
# # Run GroundingDINO
|
349 |
-
# boxes_filt, scores, pred_phrases = get_grounding_output(
|
350 |
-
# transformed_image, text_prompt, box_threshold, text_threshold
|
351 |
-
# )
|
352 |
-
|
353 |
-
# elif task_type == 'text':
|
354 |
-
# if not text_prompt:
|
355 |
-
# logger.warning("No text prompt provided for 'text' task")
|
356 |
-
# return [image_pil, Image.new('RGBA', size, color=(0, 0, 0, 0))]
|
357 |
-
|
358 |
-
# # Run GroundingDINO with provided text
|
359 |
-
# boxes_filt, scores, pred_phrases = get_grounding_output(
|
360 |
-
# transformed_image, text_prompt, box_threshold, text_threshold
|
361 |
-
# )
|
362 |
-
|
363 |
-
# elif task_type == 'scribble_box':
|
364 |
-
# # No need for GroundingDINO, get box from scribble
|
365 |
-
# boxes_filt = process_scribble_box(scribble)
|
366 |
-
# scores = torch.ones(boxes_filt.size(0))
|
367 |
-
# pred_phrases = ["scribble_box"] * boxes_filt.size(0)
|
368 |
-
|
369 |
-
# elif task_type == 'scribble_point':
|
370 |
-
# # Will handle differently with SAM
|
371 |
-
# point_coords = process_scribble_points(scribble)
|
372 |
-
# if len(point_coords) == 0:
|
373 |
-
# logger.warning("No points detected in scribble")
|
374 |
-
# return [image_pil, Image.new('RGBA', size, color=(0, 0, 0, 0))]
|
375 |
-
|
376 |
-
# boxes_filt = None # Not needed for point-based segmentation
|
377 |
-
|
378 |
-
# else:
|
379 |
-
# logger.error(f"Unknown task type: {task_type}")
|
380 |
-
# return [image_pil, Image.new('RGBA', size, color=(0, 0, 0, 0))]
|
381 |
-
|
382 |
-
# Process boxes if present (not for scribble_point)
|
383 |
if boxes_filt is not None:
|
384 |
# Scale boxes to image dimensions
|
385 |
for i in range(boxes_filt.size(0)):
|
@@ -403,10 +286,6 @@ def run_grounded_sam(
|
|
403 |
image = np.array(image_pil)
|
404 |
sam_predictor.set_image(image)
|
405 |
|
406 |
-
# # Convert string to boolean
|
407 |
-
# if isinstance(hq_token_only, str):
|
408 |
-
# hq_token_only = (hq_token_only.lower() == 'true')
|
409 |
-
|
410 |
# Run SAM
|
411 |
# Use boxes for these task types
|
412 |
if boxes_filt.size(0) == 0:
|
@@ -422,55 +301,21 @@ def run_grounded_sam(
|
|
422 |
multimask_output=False,
|
423 |
hq_token_only=hq_token_only,
|
424 |
)
|
425 |
-
|
426 |
-
# elif task_type == 'scribble_point':
|
427 |
-
# # Use points for this task type
|
428 |
-
# point_labels = np.ones(point_coords.shape[0])
|
429 |
-
|
430 |
-
# masks, _, _ = sam_predictor.predict(
|
431 |
-
# point_coords=point_coords,
|
432 |
-
# point_labels=point_labels,
|
433 |
-
# box=None,
|
434 |
-
# multimask_output=False,
|
435 |
-
# hq_token_only=hq_token_only,
|
436 |
-
# )
|
437 |
|
438 |
# Create mask image
|
439 |
mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))
|
440 |
mask_draw = ImageDraw.Draw(mask_image)
|
441 |
|
442 |
# Draw masks
|
443 |
-
|
444 |
-
|
445 |
-
# draw_mask(mask, mask_draw, random_color=True)
|
446 |
-
# else:
|
447 |
-
for mask in masks:
|
448 |
-
draw_mask(mask[0].cpu().numpy(), mask_draw)
|
449 |
|
450 |
# Draw boxes and points on original image
|
451 |
image_draw = ImageDraw.Draw(image_pil)
|
452 |
|
453 |
for box, label in zip(boxes_filt, pred_phrases):
|
454 |
draw_box(box, image_draw, label)
|
455 |
-
|
456 |
-
# if task_type == 'scribble_box':
|
457 |
-
# for box in boxes_filt:
|
458 |
-
# draw_box(box, image_draw, None)
|
459 |
-
# elif task_type in ['text', 'automatic']:
|
460 |
-
# for box, label in zip(boxes_filt, pred_phrases):
|
461 |
-
# draw_box(box, image_draw, label)
|
462 |
-
# elif task_type == 'scribble_point':
|
463 |
-
# draw_point(point_coords, image_draw)
|
464 |
-
|
465 |
-
# Add caption text for automatic mode
|
466 |
-
# if task_type == 'automatic':
|
467 |
-
# image_draw.text((10, 10), text_prompt, fill='black')
|
468 |
-
|
469 |
-
# Combine original image with mask
|
470 |
-
# image_pil = image_pil.convert('RGBA')
|
471 |
-
# image_pil.alpha_composite(mask_image)
|
472 |
-
|
473 |
-
# return [image_pil, mask_image]
|
474 |
return [mask_image]
|
475 |
|
476 |
except Exception as e:
|
@@ -494,64 +339,23 @@ def create_ui():
|
|
494 |
with gr.Row():
|
495 |
with gr.Column():
|
496 |
input_image = gr.Image(type="pil", label="image")
|
497 |
-
|
498 |
-
# sources=["upload", "clipboard"],
|
499 |
-
# transforms=[],
|
500 |
-
# layers=False,
|
501 |
-
# format="pil",
|
502 |
-
# label="base image",
|
503 |
-
# show_label=True
|
504 |
-
# )
|
505 |
-
# task_type = gr.Dropdown(
|
506 |
-
# ["automatic", "scribble_point", "scribble_box", "text"],
|
507 |
-
# value="automatic",
|
508 |
-
# label="Task Type"
|
509 |
-
# )
|
510 |
-
# text_prompt = gr.Textbox(label="Text Prompt", placeholder="bench .")
|
511 |
-
# hq_token_only = gr.Dropdown(
|
512 |
-
# [False, True], value=False, label="hq_token_only"
|
513 |
-
# )
|
514 |
run_button = gr.Button(value='Run')
|
515 |
-
|
516 |
-
# with gr.Accordion("Advanced options", open=False):
|
517 |
-
# box_threshold = gr.Slider(
|
518 |
-
# label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001
|
519 |
-
# )
|
520 |
-
# text_threshold = gr.Slider(
|
521 |
-
# label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
522 |
-
# )
|
523 |
-
# iou_threshold = gr.Slider(
|
524 |
-
# label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001
|
525 |
-
# )
|
526 |
|
527 |
with gr.Column():
|
528 |
gallery = gr.Gallery(
|
529 |
label="Generated images", show_label=False, elem_id="gallery"
|
530 |
)
|
531 |
-
|
532 |
-
# # Update visibility of text prompt based on task type
|
533 |
-
# def update_text_prompt_visibility(task):
|
534 |
-
# return gr.update(visible=(task == "text"))
|
535 |
-
|
536 |
-
# task_type.change(
|
537 |
-
# fn=update_text_prompt_visibility,
|
538 |
-
# inputs=[task_type],
|
539 |
-
# outputs=[text_prompt]
|
540 |
-
# )
|
541 |
|
542 |
# Run button
|
543 |
run_button.click(
|
544 |
fn=run_grounded_sam,
|
545 |
inputs=[
|
546 |
input_image
|
547 |
-
# , text_prompt, task_type,
|
548 |
-
# box_threshold, text_threshold, iou_threshold, hq_token_only
|
549 |
],
|
550 |
outputs=gallery
|
551 |
-
)
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
return block
|
556 |
|
557 |
|
|
|
32 |
import gradio as gr
|
33 |
import argparse
|
34 |
from PIL import Image, ImageDraw, ImageFont
|
35 |
+
# from scipy import ndimage
|
36 |
|
37 |
# Grounding DINO
|
38 |
import GroundingDINO.groundingdino.datasets.transforms as T
|
|
|
104 |
_models['sam_predictor'] = SamPredictor(sam)
|
105 |
|
106 |
logger.info(f"SAM-HQ model loaded in {time.time() - start_time:.2f} seconds")
|
107 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
except Exception as e:
|
110 |
logger.error(f"Error loading {model_name} model: {e}")
|
|
|
127 |
torch.cuda.empty_cache()
|
128 |
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
def transform_image(image_pil: Image.Image) -> torch.Tensor:
|
131 |
"""Transform PIL image for GroundingDINO"""
|
132 |
transform = T.Compose([
|
|
|
192 |
|
193 |
def draw_mask(mask: np.ndarray, draw: ImageDraw.Draw) -> None:
|
194 |
"""Draw mask on image"""
|
195 |
+
|
|
|
|
|
|
|
196 |
color = (255, 255, 255, 255)
|
197 |
|
198 |
nonzero_coords = np.transpose(np.nonzero(mask))
|
|
|
216 |
draw.text((box[0], box[1]), str(label), fill="white")
|
217 |
|
218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
def run_grounded_sam(
|
220 |
input_image
|
221 |
# text_prompt: str,
|
|
|
249 |
if image_pil is None:
|
250 |
logger.error("No input image provided")
|
251 |
return [Image.new('RGB', (400, 300), color='gray')]
|
252 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
# Transform image for GroundingDINO
|
254 |
transformed_image = transform_image(image_pil)
|
255 |
|
|
|
262 |
boxes_filt, scores, pred_phrases = get_grounding_output(
|
263 |
transformed_image, text_prompt, box_threshold, text_threshold
|
264 |
)
|
265 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
if boxes_filt is not None:
|
267 |
# Scale boxes to image dimensions
|
268 |
for i in range(boxes_filt.size(0)):
|
|
|
286 |
image = np.array(image_pil)
|
287 |
sam_predictor.set_image(image)
|
288 |
|
|
|
|
|
|
|
|
|
289 |
# Run SAM
|
290 |
# Use boxes for these task types
|
291 |
if boxes_filt.size(0) == 0:
|
|
|
301 |
multimask_output=False,
|
302 |
hq_token_only=hq_token_only,
|
303 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
# Create mask image
|
306 |
mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))
|
307 |
mask_draw = ImageDraw.Draw(mask_image)
|
308 |
|
309 |
# Draw masks
|
310 |
+
for mask in masks:
|
311 |
+
draw_mask(mask[0].cpu().numpy(), mask_draw)
|
|
|
|
|
|
|
|
|
312 |
|
313 |
# Draw boxes and points on original image
|
314 |
image_draw = ImageDraw.Draw(image_pil)
|
315 |
|
316 |
for box, label in zip(boxes_filt, pred_phrases):
|
317 |
draw_box(box, image_draw, label)
|
318 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
return [mask_image]
|
320 |
|
321 |
except Exception as e:
|
|
|
339 |
with gr.Row():
|
340 |
with gr.Column():
|
341 |
input_image = gr.Image(type="pil", label="image")
|
342 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
run_button = gr.Button(value='Run')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
|
345 |
with gr.Column():
|
346 |
gallery = gr.Gallery(
|
347 |
label="Generated images", show_label=False, elem_id="gallery"
|
348 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
349 |
|
350 |
# Run button
|
351 |
run_button.click(
|
352 |
fn=run_grounded_sam,
|
353 |
inputs=[
|
354 |
input_image
|
|
|
|
|
355 |
],
|
356 |
outputs=gallery
|
357 |
+
)
|
358 |
+
|
|
|
|
|
359 |
return block
|
360 |
|
361 |
|