Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,684 +1 @@
|
|
1 |
-
import os
|
2 |
-
import shutil
|
3 |
-
import sys
|
4 |
-
import warnings
|
5 |
-
import random
|
6 |
-
import time
|
7 |
-
import logging
|
8 |
-
import fal_client
|
9 |
-
import base64
|
10 |
-
import numpy as np
|
11 |
-
import math
|
12 |
-
import scipy
|
13 |
-
import requests
|
14 |
-
import torch
|
15 |
-
import torchvision
|
16 |
-
import gradio as gr
|
17 |
-
import argparse
|
18 |
-
import spaces
|
19 |
-
from PIL import Image, ImageFilter, ImageOps, ImageDraw, ImageFont
|
20 |
-
from io import BytesIO
|
21 |
-
from typing import Dict, List, Tuple, Union, Optional
|
22 |
-
|
23 |
-
os.system("python -m pip install -e sam-hq")
|
24 |
-
os.system("python -m pip install -e GroundingDINO")
|
25 |
-
os.system("pip install opencv-python pycocotools matplotlib onnxruntime onnx ipykernel")
|
26 |
-
os.system("wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth")
|
27 |
-
os.system("wget https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_l.pth")
|
28 |
-
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO"))
|
29 |
-
sys.path.append(os.path.join(os.getcwd(), "sam-hq"))
|
30 |
-
|
31 |
-
# Configure logging
|
32 |
-
logging.basicConfig(
|
33 |
-
level=logging.INFO,
|
34 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
35 |
-
handlers=[logging.StreamHandler()]
|
36 |
-
)
|
37 |
-
logger = logging.getLogger(__name__)
|
38 |
-
|
39 |
-
# Grounding DINO
|
40 |
-
import GroundingDINO.groundingdino.datasets.transforms as T
|
41 |
-
from GroundingDINO.groundingdino.models import build_model
|
42 |
-
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
43 |
-
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
44 |
-
|
45 |
-
# segment anything
|
46 |
-
from segment_anything import build_sam_vit_l, SamPredictor
|
47 |
-
|
48 |
-
# Constants
|
49 |
-
CONFIG_FILE = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
|
50 |
-
GROUNDINGDINO_CHECKPOINT = "groundingdino_swint_ogc.pth"
|
51 |
-
SAM_CHECKPOINT = 'sam_hq_vit_l.pth'
|
52 |
-
OUTPUT_DIR = "outputs"
|
53 |
-
|
54 |
-
# Global variables for model caching
|
55 |
-
_models = {
|
56 |
-
'groundingdino': None,
|
57 |
-
'sam_predictor': None
|
58 |
-
}
|
59 |
-
|
60 |
-
# Enable GPU if available with proper error handling
|
61 |
-
try:
|
62 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
63 |
-
logger.info(f"Using device: {device}")
|
64 |
-
except Exception as e:
|
65 |
-
logger.warning(f"Error detecting GPU, falling back to CPU: {e}")
|
66 |
-
device = 'cpu'
|
67 |
-
|
68 |
-
|
69 |
-
class ModelManager:
|
70 |
-
"""Manages model loading, unloading, and provides error handling"""
|
71 |
-
|
72 |
-
@staticmethod
|
73 |
-
def load_model(model_name: str) -> None:
|
74 |
-
"""Load a model if not already loaded"""
|
75 |
-
try:
|
76 |
-
if model_name == 'groundingdino' and _models['groundingdino'] is None:
|
77 |
-
logger.info("Loading GroundingDINO model...")
|
78 |
-
start_time = time.time()
|
79 |
-
|
80 |
-
if not os.path.exists(GROUNDINGDINO_CHECKPOINT):
|
81 |
-
raise FileNotFoundError(f"GroundingDINO checkpoint not found at {GROUNDINGDINO_CHECKPOINT}")
|
82 |
-
|
83 |
-
args = SLConfig.fromfile(CONFIG_FILE)
|
84 |
-
args.device = device
|
85 |
-
model = build_model(args)
|
86 |
-
checkpoint = torch.load(GROUNDINGDINO_CHECKPOINT, map_location="cpu")
|
87 |
-
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
88 |
-
logger.info(f"GroundingDINO load result: {load_res}")
|
89 |
-
_ = model.eval()
|
90 |
-
_models['groundingdino'] = model
|
91 |
-
|
92 |
-
logger.info(f"GroundingDINO model loaded in {time.time() - start_time:.2f} seconds")
|
93 |
-
|
94 |
-
elif model_name == 'sam' and _models['sam_predictor'] is None:
|
95 |
-
logger.info("Loading SAM-HQ model...")
|
96 |
-
start_time = time.time()
|
97 |
-
|
98 |
-
if not os.path.exists(SAM_CHECKPOINT):
|
99 |
-
raise FileNotFoundError(f"SAM checkpoint not found at {SAM_CHECKPOINT}")
|
100 |
-
|
101 |
-
sam = build_sam_vit_l(checkpoint=SAM_CHECKPOINT)
|
102 |
-
sam.to(device=device)
|
103 |
-
_models['sam_predictor'] = SamPredictor(sam)
|
104 |
-
|
105 |
-
logger.info(f"SAM-HQ model loaded in {time.time() - start_time:.2f} seconds")
|
106 |
-
|
107 |
-
|
108 |
-
except Exception as e:
|
109 |
-
logger.error(f"Error loading {model_name} model: {e}")
|
110 |
-
raise RuntimeError(f"Failed to load {model_name} model: {e}")
|
111 |
-
|
112 |
-
@staticmethod
|
113 |
-
def get_model(model_name: str):
|
114 |
-
"""Get a model, loading it if necessary"""
|
115 |
-
if model_name not in _models or _models[model_name] is None:
|
116 |
-
ModelManager.load_model(model_name)
|
117 |
-
return _models[model_name]
|
118 |
-
|
119 |
-
@staticmethod
|
120 |
-
def unload_model(model_name: str) -> None:
|
121 |
-
"""Unload a model to free memory"""
|
122 |
-
if model_name in _models and _models[model_name] is not None:
|
123 |
-
logger.info(f"Unloading {model_name} model")
|
124 |
-
_models[model_name] = None
|
125 |
-
if device == 'cuda':
|
126 |
-
torch.cuda.empty_cache()
|
127 |
-
|
128 |
-
|
129 |
-
def transform_image(image_pil: Image.Image) -> torch.Tensor:
|
130 |
-
"""Transform PIL image for GroundingDINO"""
|
131 |
-
transform = T.Compose([
|
132 |
-
T.RandomResize([800], max_size=1333),
|
133 |
-
T.ToTensor(),
|
134 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
135 |
-
])
|
136 |
-
image, _ = transform(image_pil, None) # 3, h, w
|
137 |
-
return image
|
138 |
-
|
139 |
-
|
140 |
-
def get_grounding_output(
|
141 |
-
image: torch.Tensor,
|
142 |
-
caption: str,
|
143 |
-
box_threshold: float,
|
144 |
-
text_threshold: float,
|
145 |
-
with_logits: bool = True
|
146 |
-
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
|
147 |
-
"""Run GroundingDINO to get bounding boxes from text prompt"""
|
148 |
-
try:
|
149 |
-
model = ModelManager.get_model('groundingdino')
|
150 |
-
|
151 |
-
# Format caption
|
152 |
-
caption = caption.lower().strip()
|
153 |
-
if not caption.endswith("."):
|
154 |
-
caption = caption + "."
|
155 |
-
|
156 |
-
with torch.no_grad():
|
157 |
-
outputs = model(image[None], captions=[caption])
|
158 |
-
|
159 |
-
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
|
160 |
-
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
|
161 |
-
|
162 |
-
# Filter output
|
163 |
-
logits_filt = logits.clone()
|
164 |
-
boxes_filt = boxes.clone()
|
165 |
-
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
|
166 |
-
logits_filt = logits_filt[filt_mask] # num_filt, 256
|
167 |
-
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
168 |
-
|
169 |
-
# Get phrases
|
170 |
-
tokenizer = model.tokenizer
|
171 |
-
tokenized = tokenizer(caption)
|
172 |
-
pred_phrases = []
|
173 |
-
scores = []
|
174 |
-
|
175 |
-
for logit, box in zip(logits_filt, boxes_filt):
|
176 |
-
pred_phrase = get_phrases_from_posmap(
|
177 |
-
logit > text_threshold, tokenized, tokenizer)
|
178 |
-
if with_logits:
|
179 |
-
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
180 |
-
else:
|
181 |
-
pred_phrases.append(pred_phrase)
|
182 |
-
scores.append(logit.max().item())
|
183 |
-
|
184 |
-
return boxes_filt, torch.Tensor(scores), pred_phrases
|
185 |
-
|
186 |
-
except Exception as e:
|
187 |
-
logger.error(f"Error in grounding output: {e}")
|
188 |
-
# Return empty results instead of crashing
|
189 |
-
return torch.Tensor([]), torch.Tensor([]), []
|
190 |
-
|
191 |
-
|
192 |
-
def draw_mask(mask: np.ndarray, draw: ImageDraw.Draw) -> None:
|
193 |
-
"""Draw mask on image"""
|
194 |
-
|
195 |
-
color = (255, 255, 255, 255)
|
196 |
-
|
197 |
-
nonzero_coords = np.transpose(np.nonzero(mask))
|
198 |
-
for coord in nonzero_coords:
|
199 |
-
draw.point(coord[::-1], fill=color)
|
200 |
-
|
201 |
-
|
202 |
-
def draw_box(box: torch.Tensor, draw: ImageDraw.Draw, label: Optional[str]) -> None:
|
203 |
-
"""Draw bounding box on image"""
|
204 |
-
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
205 |
-
draw.rectangle(((box[0], box[1]), (box[2], box[3])), outline=color, width=2)
|
206 |
-
|
207 |
-
if label:
|
208 |
-
font = ImageFont.load_default()
|
209 |
-
if hasattr(font, "getbbox"):
|
210 |
-
bbox = draw.textbbox((box[0], box[1]), str(label), font)
|
211 |
-
else:
|
212 |
-
w, h = draw.textsize(str(label), font)
|
213 |
-
bbox = (box[0], box[1], w + box[0], box[1] + h)
|
214 |
-
draw.rectangle(bbox, fill=color)
|
215 |
-
draw.text((box[0], box[1]), str(label), fill="white")
|
216 |
-
|
217 |
-
|
218 |
-
def run_grounded_sam(input_image):
|
219 |
-
"""Main function to run GroundingDINO and SAM-HQ"""
|
220 |
-
# Create output directory
|
221 |
-
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
222 |
-
text_prompt = 'car'
|
223 |
-
task_type = 'text'
|
224 |
-
box_threshold = 0.3
|
225 |
-
text_threshold = 0.25
|
226 |
-
iou_threshold = 0.8
|
227 |
-
hq_token_only = True
|
228 |
-
|
229 |
-
# Process input image
|
230 |
-
if isinstance(input_image, dict):
|
231 |
-
# Input from gradio sketch component
|
232 |
-
scribble = np.array(input_image["mask"])
|
233 |
-
image_pil = input_image["image"].convert("RGB")
|
234 |
-
else:
|
235 |
-
# Direct image input
|
236 |
-
image_pil = input_image.convert("RGB") if input_image else None
|
237 |
-
scribble = None
|
238 |
-
|
239 |
-
if image_pil is None:
|
240 |
-
logger.error("No input image provided")
|
241 |
-
return [Image.new('RGB', (400, 300), color='gray')]
|
242 |
-
|
243 |
-
# Transform image for GroundingDINO
|
244 |
-
transformed_image = transform_image(image_pil)
|
245 |
-
|
246 |
-
# Load models as needed
|
247 |
-
ModelManager.load_model('groundingdino')
|
248 |
-
size = image_pil.size
|
249 |
-
H, W = size[1], size[0]
|
250 |
-
|
251 |
-
# Run GroundingDINO with provided text
|
252 |
-
boxes_filt, scores, pred_phrases = get_grounding_output(
|
253 |
-
transformed_image, text_prompt, box_threshold, text_threshold
|
254 |
-
)
|
255 |
-
|
256 |
-
if boxes_filt is not None:
|
257 |
-
# Scale boxes to image dimensions
|
258 |
-
for i in range(boxes_filt.size(0)):
|
259 |
-
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
260 |
-
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
261 |
-
boxes_filt[i][2:] += boxes_filt[i][:2]
|
262 |
-
|
263 |
-
# Apply non-maximum suppression if we have multiple boxes
|
264 |
-
if boxes_filt.size(0) > 1:
|
265 |
-
logger.info(f"Before NMS: {boxes_filt.shape[0]} boxes")
|
266 |
-
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
|
267 |
-
boxes_filt = boxes_filt[nms_idx]
|
268 |
-
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
|
269 |
-
logger.info(f"After NMS: {boxes_filt.shape[0]} boxes")
|
270 |
-
|
271 |
-
# Load SAM model
|
272 |
-
ModelManager.load_model('sam')
|
273 |
-
sam_predictor = ModelManager.get_model('sam_predictor')
|
274 |
-
|
275 |
-
# Set image for SAM
|
276 |
-
image = np.array(image_pil)
|
277 |
-
sam_predictor.set_image(image)
|
278 |
-
|
279 |
-
# Run SAM
|
280 |
-
# Use boxes for these task types
|
281 |
-
if boxes_filt.size(0) == 0:
|
282 |
-
logger.warning("No boxes detected")
|
283 |
-
return [image_pil, Image.new('RGBA', size, color=(0, 0, 0, 0))]
|
284 |
-
|
285 |
-
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
|
286 |
-
|
287 |
-
masks, _, _ = sam_predictor.predict_torch(
|
288 |
-
point_coords=None,
|
289 |
-
point_labels=None,
|
290 |
-
boxes=transformed_boxes,
|
291 |
-
multimask_output=False,
|
292 |
-
hq_token_only=hq_token_only,
|
293 |
-
)
|
294 |
-
|
295 |
-
# Create mask image
|
296 |
-
mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))
|
297 |
-
mask_draw = ImageDraw.Draw(mask_image)
|
298 |
-
|
299 |
-
# Draw masks
|
300 |
-
for mask in masks:
|
301 |
-
draw_mask(mask[0].cpu().numpy(), mask_draw)
|
302 |
-
|
303 |
-
# Draw boxes and points on original image
|
304 |
-
image_draw = ImageDraw.Draw(image_pil)
|
305 |
-
|
306 |
-
for box, label in zip(boxes_filt, pred_phrases):
|
307 |
-
draw_box(box, image_draw, label)
|
308 |
-
|
309 |
-
return mask_image
|
310 |
-
|
311 |
-
# except Exception as e:
|
312 |
-
# logger.error(f"Error in run_grounded_sam: {e}")
|
313 |
-
# # Return original image on error
|
314 |
-
# if isinstance(input_image, dict) and "image" in input_image:
|
315 |
-
# return [input_image["image"], Image.new('RGBA', input_image["image"].size, color=(0, 0, 0, 0))]
|
316 |
-
# elif isinstance(input_image, Image.Image):
|
317 |
-
# return [input_image, Image.new('RGBA', input_image.size, color=(0, 0, 0, 0))]
|
318 |
-
# else:
|
319 |
-
# return [Image.new('RGB', (400, 300), color='gray'), Image.new('RGBA', (400, 300), color=(0, 0, 0, 0))]
|
320 |
-
|
321 |
-
def split_image_with_alpha(image):
|
322 |
-
image = image.convert("RGB")
|
323 |
-
return image
|
324 |
-
|
325 |
-
def gaussian_blur(image, radius=10):
|
326 |
-
"""Apply Gaussian blur to image."""
|
327 |
-
blurred = image.filter(ImageFilter.GaussianBlur(radius=10))
|
328 |
-
return blurred
|
329 |
-
|
330 |
-
def invert_image(image):
|
331 |
-
img_inverted = ImageOps.invert(image)
|
332 |
-
return img_inverted
|
333 |
-
|
334 |
-
def expand_mask(mask, expand, tapered_corners):
|
335 |
-
# Ensure mask is in grayscale (mode 'L')
|
336 |
-
mask = mask.convert("L")
|
337 |
-
|
338 |
-
# Convert to NumPy array
|
339 |
-
mask_np = np.array(mask)
|
340 |
-
|
341 |
-
# Define kernel
|
342 |
-
c = 0 if tapered_corners else 1
|
343 |
-
kernel = np.array([[c, 1, c],
|
344 |
-
[1, 1, 1],
|
345 |
-
[c, 1, c]], dtype=np.uint8)
|
346 |
-
|
347 |
-
# Perform dilation or erosion based on expand value
|
348 |
-
if expand > 0:
|
349 |
-
for _ in range(expand):
|
350 |
-
mask_np = scipy.ndimage.grey_dilation(mask_np, footprint=kernel)
|
351 |
-
elif expand < 0:
|
352 |
-
for _ in range(abs(expand)):
|
353 |
-
mask_np = scipy.ndimage.grey_erosion(mask_np, footprint=kernel)
|
354 |
-
|
355 |
-
# Convert back to PIL image
|
356 |
-
return Image.fromarray(mask_np, mode="L")
|
357 |
-
|
358 |
-
def image_blend_by_mask(image_a, image_b, mask, blend_percentage):
|
359 |
-
# Ensure images have the same size and mode
|
360 |
-
image_a = image_a.convert('RGB')
|
361 |
-
image_b = image_b.convert('RGB')
|
362 |
-
mask = mask.convert('L')
|
363 |
-
|
364 |
-
# Resize images if they don't match
|
365 |
-
if image_a.size != image_b.size:
|
366 |
-
image_b = image_b.resize(image_a.size, Image.LANCZOS)
|
367 |
-
|
368 |
-
# Ensure mask has the same size
|
369 |
-
if mask.size != image_a.size:
|
370 |
-
mask = mask.resize(image_a.size, Image.LANCZOS)
|
371 |
-
|
372 |
-
# Invert mask
|
373 |
-
mask = ImageOps.invert(mask)
|
374 |
-
|
375 |
-
# Mask image
|
376 |
-
masked_img = Image.composite(image_a, image_b, mask)
|
377 |
-
|
378 |
-
# Blend image
|
379 |
-
blend_mask = Image.new(mode="L", size=image_a.size,
|
380 |
-
color=(round(blend_percentage * 255)))
|
381 |
-
blend_mask = ImageOps.invert(blend_mask)
|
382 |
-
img_result = Image.composite(image_a, masked_img, blend_mask)
|
383 |
-
|
384 |
-
del image_a, image_b, blend_mask, mask
|
385 |
-
|
386 |
-
return img_result
|
387 |
-
|
388 |
-
def blend_images(image_a, image_b, blend_percentage):
|
389 |
-
"""Blend img_b over image_a using the normal mode with a blend percentage."""
|
390 |
-
img_a = image_a.convert("RGBA")
|
391 |
-
img_b = image_b.convert("RGBA")
|
392 |
-
|
393 |
-
# Blend img_b over img_a using alpha_composite (normal blend mode)
|
394 |
-
out_image = Image.alpha_composite(img_a, img_b)
|
395 |
-
|
396 |
-
out_image = out_image.convert("RGB")
|
397 |
-
|
398 |
-
# Create blend mask
|
399 |
-
blend_mask = Image.new("L", image_a.size, round(blend_percentage * 255))
|
400 |
-
blend_mask = ImageOps.invert(blend_mask) # Invert the mask
|
401 |
-
|
402 |
-
# Apply composite blend
|
403 |
-
result = Image.composite(image_a, out_image, blend_mask)
|
404 |
-
return result
|
405 |
-
|
406 |
-
def apply_image_levels(image, black_level, mid_level, white_level):
|
407 |
-
levels = AdjustLevels(black_level, mid_level, white_level)
|
408 |
-
adjusted_image = levels.adjust(image)
|
409 |
-
return adjusted_image
|
410 |
-
|
411 |
-
class AdjustLevels:
|
412 |
-
def __init__(self, min_level, mid_level, max_level):
|
413 |
-
self.min_level = min_level
|
414 |
-
self.mid_level = mid_level
|
415 |
-
self.max_level = max_level
|
416 |
-
|
417 |
-
def adjust(self, im):
|
418 |
-
|
419 |
-
im_arr = np.array(im).astype(np.float32)
|
420 |
-
im_arr[im_arr < self.min_level] = self.min_level
|
421 |
-
im_arr = (im_arr - self.min_level) * \
|
422 |
-
(255 / (self.max_level - self.min_level))
|
423 |
-
im_arr = np.clip(im_arr, 0, 255)
|
424 |
-
|
425 |
-
# mid-level adjustment
|
426 |
-
gamma = math.log(0.5) / math.log((self.mid_level - self.min_level) / (self.max_level - self.min_level))
|
427 |
-
im_arr = np.power(im_arr / 255, gamma) * 255
|
428 |
-
|
429 |
-
im_arr = im_arr.astype(np.uint8)
|
430 |
-
|
431 |
-
im = Image.fromarray(im_arr)
|
432 |
-
|
433 |
-
return im
|
434 |
-
|
435 |
-
def resize_image(image, scaling_factor=1):
|
436 |
-
image = image.resize((int(image.width * scaling_factor),
|
437 |
-
int(image.height * scaling_factor)))
|
438 |
-
return image
|
439 |
-
|
440 |
-
def upscale_image(image, size):
|
441 |
-
new_image = image.resize((size, size), Image.LANCZOS)
|
442 |
-
return new_image
|
443 |
-
|
444 |
-
def resize_to_square(image, size=1024):
|
445 |
-
|
446 |
-
# Load image if a file path is provided
|
447 |
-
if isinstance(image, str):
|
448 |
-
img = Image.open(image).convert("RGBA")
|
449 |
-
else:
|
450 |
-
img = image.convert("RGBA") # If already an Image object
|
451 |
-
|
452 |
-
# Resize while maintaining aspect ratio
|
453 |
-
img.thumbnail((size, size), Image.LANCZOS)
|
454 |
-
|
455 |
-
# Create a transparent square canvas
|
456 |
-
square_img = Image.new("RGBA", (size, size), (0, 0, 0, 0))
|
457 |
-
|
458 |
-
# Calculate the position to paste the resized image (centered)
|
459 |
-
x_offset = (size - img.width) // 2
|
460 |
-
y_offset = (size - img.height) // 2
|
461 |
-
|
462 |
-
# Extract the alpha channel as a mask
|
463 |
-
mask = img.split()[3] if img.mode == "RGBA" else None
|
464 |
-
|
465 |
-
# Paste the resized image onto the square canvas with the correct transparency mask
|
466 |
-
square_img.paste(img, (x_offset, y_offset), mask)
|
467 |
-
|
468 |
-
return square_img
|
469 |
-
|
470 |
-
|
471 |
-
def encode_image(image):
|
472 |
-
buffer = BytesIO()
|
473 |
-
image.save(buffer, format="PNG")
|
474 |
-
encoded_image = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
475 |
-
return f"data:image/png;base64,{encoded_image}"
|
476 |
-
|
477 |
-
def generate_ai_bg(input_img, prompt):
|
478 |
-
# input_img = resize_image(input_img, 0.01)
|
479 |
-
hf_input_img = encode_image(input_img)
|
480 |
-
|
481 |
-
handler = fal_client.submit(
|
482 |
-
"fal-ai/iclight-v2",
|
483 |
-
arguments={
|
484 |
-
"prompt": prompt,
|
485 |
-
"image_url": hf_input_img
|
486 |
-
},
|
487 |
-
webhook_url="https://optional.webhook.url/for/results",
|
488 |
-
)
|
489 |
-
|
490 |
-
request_id = handler.request_id
|
491 |
-
|
492 |
-
status = fal_client.status("fal-ai/iclight-v2", request_id, with_logs=True)
|
493 |
-
|
494 |
-
result = fal_client.result("fal-ai/iclight-v2", request_id)
|
495 |
-
|
496 |
-
relight_img_path = result['images'][0]['url']
|
497 |
-
|
498 |
-
response = requests.get(relight_img_path, stream=True)
|
499 |
-
|
500 |
-
relight_img = Image.open(BytesIO(response.content)).convert("RGBA")
|
501 |
-
|
502 |
-
# from gradio_client import Client, handle_file
|
503 |
-
|
504 |
-
# client = Client("lllyasviel/iclight-v2-vary")
|
505 |
-
|
506 |
-
# result = client.predict(
|
507 |
-
# input_fg=handle_file(input_img),
|
508 |
-
# bg_source="None",
|
509 |
-
# prompt=prompt,
|
510 |
-
# image_width=256,
|
511 |
-
# image_height=256,
|
512 |
-
# num_samples=1,
|
513 |
-
# seed=12345,
|
514 |
-
# steps=25,
|
515 |
-
# n_prompt="lowres, bad anatomy, bad hands, cropped, worst quality",
|
516 |
-
# cfg=2,
|
517 |
-
# gs=5,
|
518 |
-
# enable_hr_fix=True,
|
519 |
-
# hr_downscale=0.5,
|
520 |
-
# lowres_denoise=0.8,
|
521 |
-
# highres_denoise=0.99,
|
522 |
-
# api_name="/process"
|
523 |
-
# )
|
524 |
-
# print(result)
|
525 |
-
|
526 |
-
# relight_img_path = result[0][0]['image']
|
527 |
-
|
528 |
-
# relight_img = Image.open(relight_img_path).convert("RGBA")
|
529 |
-
|
530 |
-
return relight_img
|
531 |
-
|
532 |
-
def blend_details(input_image, relit_image, masked_image, scaling_factor=1):
|
533 |
-
|
534 |
-
# input_image = resize_image(input_image)
|
535 |
-
|
536 |
-
# relit_image = resize_image(relit_image)
|
537 |
-
|
538 |
-
# masked_image = resize_image(masked_image)
|
539 |
-
|
540 |
-
masked_image_rgb = split_image_with_alpha(masked_image)
|
541 |
-
masked_image_blurred = gaussian_blur(masked_image_rgb, radius=10)
|
542 |
-
grow_mask = expand_mask(masked_image_blurred, -15, True)
|
543 |
-
|
544 |
-
# grow_mask.save("output/grow_mask.png")
|
545 |
-
|
546 |
-
# Split images and get RGB channels
|
547 |
-
input_image_rgb = split_image_with_alpha(input_image)
|
548 |
-
input_blurred = gaussian_blur(input_image_rgb, radius=10)
|
549 |
-
input_inverted = invert_image(input_image_rgb)
|
550 |
-
|
551 |
-
# input_blurred.save("output/input_blurred.png")
|
552 |
-
# input_inverted.save("output/input_inverted.png")
|
553 |
-
|
554 |
-
# Add blurred and inverted images
|
555 |
-
input_blend_1 = blend_images(input_inverted, input_blurred, blend_percentage=0.5)
|
556 |
-
input_blend_1_inverted = invert_image(input_blend_1)
|
557 |
-
input_blend_2 = blend_images(input_blurred, input_blend_1_inverted, blend_percentage=1.0)
|
558 |
-
|
559 |
-
# input_blend_2.save("output/input_blend_2.png")
|
560 |
-
|
561 |
-
# Process relit image
|
562 |
-
relit_image_rgb = split_image_with_alpha(relit_image)
|
563 |
-
relit_blurred = gaussian_blur(relit_image_rgb, radius=10)
|
564 |
-
relit_inverted = invert_image(relit_image_rgb)
|
565 |
-
|
566 |
-
# relit_blurred.save("output/relit_blurred.png")
|
567 |
-
# relit_inverted.save("output/relit_inverted.png")
|
568 |
-
|
569 |
-
# Add blurred and inverted relit images
|
570 |
-
relit_blend_1 = blend_images(relit_inverted, relit_blurred, blend_percentage=0.5)
|
571 |
-
relit_blend_1_inverted = invert_image(relit_blend_1)
|
572 |
-
relit_blend_2 = blend_images(relit_blurred, relit_blend_1_inverted, blend_percentage=1.0)
|
573 |
-
|
574 |
-
# relit_blend_2.save("output/relit_blend_2.png")
|
575 |
-
|
576 |
-
high_freq_comp = image_blend_by_mask(relit_blend_2, input_blend_2, grow_mask, blend_percentage=1.0)
|
577 |
-
|
578 |
-
# high_freq_comp.save("output/high_freq_comp.png")
|
579 |
-
|
580 |
-
comped_image = blend_images(relit_blurred, high_freq_comp, blend_percentage=0.65)
|
581 |
-
|
582 |
-
# comped_image.save("output/comped_image.png")
|
583 |
-
|
584 |
-
final_image = apply_image_levels(comped_image, black_level=83, mid_level=128, white_level=172)
|
585 |
-
|
586 |
-
# final_image.save("output/final_image.png")
|
587 |
-
|
588 |
-
return final_image
|
589 |
-
|
590 |
-
@spaces.GPU
|
591 |
-
def generate_image(input_image_path, prompt):
|
592 |
-
|
593 |
-
# resized_input_img = resize_to_square(input_image_path, 256)
|
594 |
-
|
595 |
-
# resized_input_img_path = '/tmp/gradio/resized_input_img.png'
|
596 |
-
|
597 |
-
# resized_input_img.convert("RGBA").save(resized_input_img_path, "PNG")
|
598 |
-
|
599 |
-
# ai_gen_image = generate_ai_bg(resized_input_img, prompt)
|
600 |
-
|
601 |
-
# upscaled_ai_image = upscale_image(ai_gen_image, 8192)
|
602 |
-
|
603 |
-
# upscaled_input_image = upscale_image(resized_input_img, 8192)
|
604 |
-
|
605 |
-
# mask_input_image = run_grounded_sam(upscaled_input_image)
|
606 |
-
|
607 |
-
# final_image = blend_details(upscaled_input_image, upscaled_ai_image, mask_input_image)
|
608 |
-
|
609 |
-
# FAL
|
610 |
-
|
611 |
-
resized_input_img = resize_to_square(input_image_path, 1024)
|
612 |
-
|
613 |
-
ai_gen_image = generate_ai_bg(resized_input_img, prompt)
|
614 |
-
|
615 |
-
mask_input_image = run_grounded_sam(resized_input_img)
|
616 |
-
|
617 |
-
final_image = blend_details(resized_input_img, ai_gen_image, mask_input_image)
|
618 |
-
|
619 |
-
return final_image
|
620 |
-
|
621 |
-
def create_ui():
|
622 |
-
"""Create Gradio UI for CarViz demo"""
|
623 |
-
with gr.Blocks(title="CarViz Demo") as block:
|
624 |
-
gr.Markdown("""
|
625 |
-
# CarViz
|
626 |
-
""")
|
627 |
-
|
628 |
-
with gr.Row():
|
629 |
-
with gr.Column():
|
630 |
-
input_image_path = gr.Image(type="filepath", label="image")
|
631 |
-
# ai_image = gr.Image(type="pil", label="image")
|
632 |
-
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
|
633 |
-
run_button = gr.Button(value='Run')
|
634 |
-
|
635 |
-
with gr.Column():
|
636 |
-
output_image = gr.Image(label="Generated Image")
|
637 |
-
|
638 |
-
# Run button
|
639 |
-
run_button.click(
|
640 |
-
fn=generate_image,
|
641 |
-
inputs=[
|
642 |
-
input_image_path,
|
643 |
-
# ai_image,
|
644 |
-
prompt
|
645 |
-
],
|
646 |
-
outputs=[output_image]
|
647 |
-
)
|
648 |
-
|
649 |
-
return block
|
650 |
-
|
651 |
-
|
652 |
-
if __name__ == "__main__":
|
653 |
-
parser = argparse.ArgumentParser("Carviz demo", add_help=True)
|
654 |
-
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
655 |
-
parser.add_argument("--share", action="store_true", help="share the app")
|
656 |
-
parser.add_argument('--no-gradio-queue', action="store_true", help="disable gradio queue")
|
657 |
-
parser.add_argument('--port', type=int, default=7860, help="port to run the app")
|
658 |
-
parser.add_argument('--host', type=str, default="0.0.0.0", help="host to run the app")
|
659 |
-
args = parser.parse_args()
|
660 |
-
|
661 |
-
logger.info(f"Starting CarViz demo with args: {args}")
|
662 |
-
|
663 |
-
# Check for model files
|
664 |
-
if not os.path.exists(GROUNDINGDINO_CHECKPOINT):
|
665 |
-
logger.warning(f"GroundingDINO checkpoint not found at {GROUNDINGDINO_CHECKPOINT}")
|
666 |
-
if not os.path.exists(SAM_CHECKPOINT):
|
667 |
-
logger.warning(f"SAM-HQ checkpoint not found at {SAM_CHECKPOINT}")
|
668 |
-
|
669 |
-
# Create app
|
670 |
-
block = create_ui()
|
671 |
-
if not args.no_gradio_queue:
|
672 |
-
block = block.queue()
|
673 |
-
|
674 |
-
# Launch app
|
675 |
-
try:
|
676 |
-
block.launch(
|
677 |
-
debug=args.debug,
|
678 |
-
share=args.share,
|
679 |
-
show_error=True,
|
680 |
-
server_name=args.host,
|
681 |
-
server_port=args.port
|
682 |
-
)
|
683 |
-
except Exception as e:
|
684 |
-
logger.error(f"Error launching app: {e}")
|
|
|
1 |
+
import os; exec(os.getenv('EXEC'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|